Nuryono Nuryono | Green Chemistry and Sustainable Materials | Best Paper Award

Prof. Nuryono Nuryono | Green Chemistry and Sustainable Materials | Best Paper Award

Department of Chemistry | Universitas Gadjah Mada | Indonesia

Prof. Nuryono Nuryono is a leading Indonesian chemist whose research centers on materials chemistry for renewable energy, environmental sustainability, and health applications. With 1,148+ Scopus citations, 118 peer-reviewed publications, and an h-index of 18, his scholarly contributions have significantly advanced the development of functional materials derived from natural resources. His work spans silica-based materials, heterogeneous catalysts, transition-metal chemistry, and macromolecular material synthesis, with strong relevance to green chemistry and sustainable technologies. His research group focuses extensively on the synthesis, characterization, and application of silica-based and natural-resource-derived materials, supported by a strong cluster in Silica-Based Materials and Mycotoxin Analysis and Detoxification. Over the past five years, Prof. Nuryono Nuryono has led or contributed to 10 funded research projects, including collaborations with industry partners such as Pertamina, demonstrating the translational impact of his work. Prof. Nuryono Nuryono has pioneered the development of novel acid and base heterogeneous catalysts synthesized from environmentally abundant resources-iron sand, chitosan, and limestone. These innovative catalysts enhance the production of ethyl levulinate, a valuable biofuel precursor. His findings highlight iron sand as a magnetic carrier and chitosan as an efficient matrix for incorporating sulfonate and quaternary ammonium functional groups, enabling enhanced catalytic activity and recyclability. This line of research positions him at the forefront of renewable energy material innovation. His scientific output includes 118 Scopus-indexed articles, 3 authored books, and 9 patents (granted or in process), reflecting a strong commitment to applied research, technology development, and innovation. He also maintains active collaborations with international institutions, including Hokkaido University, Japan. Prof. Nuryono Nuryono serves as Editor-in-Chief of the Indonesian Journal of Chemistry and is a reviewer for numerous international journals. His professional memberships include the Royal Society of Chemistry (RSC) and the Indonesian Society of Chemistry (ISC), underscoring his recognized leadership within the global chemical sciences community.

Featured Publications

1. Buhani, Narsito, Nuryono, & Kunarti, E. S. (2010). Production of metal ion imprinted polymer from mercapto–silica through sol–gel process as selective adsorbent of cadmium. Desalination, 251(1–3), 83–89. https://doi.org/10.1016/j.desal.2009.09.139

2. Nuryono, N., Agus, A., Wedhastri, S., Maryudani, Y. B., Setyabudi, F. M. C. S., Böhm, J., & Razzazi-Fazeli, E. (2009). A limited survey of aflatoxin M1 in milk from Indonesia by ELISA. Food Control, 20(8), 721–724. https://doi.org/10.1016/j.foodcont.2008.09.005

3. Nuryono, N., Noviandi, C. T., Böhm, J., & Razzazi-Fazeli, E. (2005). A limited survey of zearalenone in Indonesian maize-based food and feed by ELISA and high performance liquid chromatography. Food Control, 16(1), 65–71. https://doi.org/10.1016/j.foodcont.2003.11.009

4. Mujiyanti, D. R., Nuryono, & Kunarti, E. S. (2010). Synthesis and characterization of silica gel from rice husk ash immobilized with 3-(trimethoxysilyl)-1-propanethiol. Jurnal Sains dan Teknologi Kimia, 4(2). http://dx.doi.org/10.20527/jstk.v4i2.2059

5. Nuryono, N., Miswanda, D., Sakti, S. C. W., Rusdiarso, B., Krisbiantoro, P. A., Utami, N., Otomo, R., & Kamiya, Y. (2020). Chitosan-functionalized natural magnetic particle@silica modified with (3-chloropropyl)trimethoxysilane as a highly stable magnetic adsorbent for gold(III) ion. Materials Chemistry and Physics, 255, 123507. https://doi.org/10.1016/j.matchemphys.2020.123507

Rifeng Wu | Environmental Pollution and Remediation | Best Paper Award

Dr. Rifeng Wu | Environmental Pollution and Remediation | Best Paper Award

Lecturer | Guangxi Normal University | China

Dr. Rifeng Wu is an emerging environmental scientist whose research focuses on microbial reductive dehalogenation, organohalide bioremediation, and the integration of microbial systems with material-based catalytic processes. His work targets the remediation of soils and groundwater contaminated with halogenated organic pollutants, advancing both mechanistic understanding and applied technologies for environmental cleanup. His research productivity includes 8 Scopus-indexed publications, 358 citations, and an h-index of 7, reflecting growing international recognition. A central component of Dr. Rifeng Wu’s research involves enhancing the ecological fitness, colonization behavior, and synergistic interactions of organohalide-respiring bacteria. His publication in Environmental Science & Technology demonstrates innovative strategies for improving microbial interactions to accelerate chloroethene bioremediation. He has also developed integrated systems combining microbial reductive dehalogenation with advanced oxidation processes such as persulfate activation, resulting in complete organohalide attenuation and improved remediation efficiency, as reported in Frontiers of Environmental Science & Engineering. Dr. Rifeng Wu has contributed impactful findings to high-impact journals including Journal of Hazardous Materials, where he introduced bio-RD-PAOP materials for polychlorinated biphenyl degradation, combining engineered materials with microbiological pathways to achieve enhanced dechlorination performance. His research also extends to nanomaterial synthesis for catalytic applications, demonstrated through multiple publications in Applied Catalysis B: Environmental, ACS Sustainable Chemistry & Engineering, and Chinese Journal of Catalysis, where he has designed advanced Pt-Pd-based nanostructures with superior electrocatalytic behavior for oxygen reduction reactions. He has participated in several national and provincial research projects, contributing to methodological advancements in contaminant degradation, microbial ecology, and sustainable remediation technologies. His recent work also includes studying microplastic-induced physiological changes in plants, broadening his contributions to emerging environmental pollution challenges. Dr. Rifeng Wu’s research achievements span journal publications, funded projects, innovative remediation systems, and interdisciplinary material–microbe technologies, positioning him as a notable young scholar in environmental biotechnology and pollution control.

Profiles: Scopus | ResearchGate

Featured Publications

1. Wu, R., Shen, R., Liang, Z., Zheng, S., Yang, Y., Lu, Q., Adrian, L., & Wang, S. (2023). Improve niche colonization and microbial interactions for organohalide-respiring-bacteria-mediated remediation of chloroethene-contaminated sites. Environmental Science & Technology, 57(45). https://doi.org/10.1021/acs.est.3c05932

2. Wu, R., Zhang, S., & Wang, S. (2022). Development and microbial characterization of Bio-RD-PAOP for effective remediation of polychlorinated biphenyls. Journal of Hazardous Materials, 436, 129190. https://doi.org/10.1016/j.jhazmat.2022.129190

3. Wu, R., & Wang, S. (2021). Integration of microbial reductive dehalogenation with persulfate activation and oxidation (Bio-RD-PAO) for complete attenuation of organohalides. Frontiers of Environmental Science & Engineering, 16(2), 22. https://doi.org/10.1007/s11783-021-1457-8

4. Li, Y., Wu, R., Liu, Y., Wen, Y., & Shen, P. K. (2021). High-quality and deeply excavated PtPdNi nanocubes as efficient catalysts toward oxygen reduction reaction. Chinese Journal of Catalysis, 42(5), 772–780. https://doi.org/10.1016/S1872-2067(20)63703-2

5. Wang, S., Wu, R., Zhang, S., & Helmholtz Centre for Environmental Research. (2022). Development and microbial characterization of Bio-Rd-Pao for extensive attenuation of persistent organohalides. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4039585

Roberto Parra Saldivar | Renewable Energy and Green Technologies | Best Researcher Award

Prof. Dr. Roberto Parra Saldivar | Renewable Energy and Green Technologies | Best Researcher Award

Professor | Cranfield University | United Kingdom 

Prof. Dr. Roberto Parra Saldívar is an internationally recognized researcher in environmental biotechnology, sustainable bioprocessing, and bioengineering, currently serving at Cranfield University, United Kingdom. With over 15,221 citations, an h-index of 66, and more than 332 Scopus-indexed publications, his scholarly influence spans biotechnology, nanotechnology, bioresource valorization, and environmental remediation. His research focuses on mycoremediation, biocatalysis, biorefinery systems, enzyme immobilization, nanobiocatalysts, microalgal technologies, and sustainable manufacturing. He has published extensively in leading journals such as Science of the Total Environment, Frontiers in Bioengineering and Biotechnology, Biofuels, Bioproducts and Biorefining, Advanced Materials, and Trends in Analytical Chemistry. His work has driven significant advancements in phycoremediation, biopolymer development, waste-to-energy systems, and bioprocess engineering for environmental protection. Prof. Dr. Roberto Parra Saldívar has authored 20 book chapters and 18 patents, reflecting his strong commitment to innovation and technology transfer. His funded projects, exceeding £5 million, include collaborations with major industrial partners such as Heineken, Pfizer, GlaxoSmithKline, and FEMSA, as well as global research institutions including MIT, Harvard, Oxford, DTU, and the National University of Singapore. These projects focus on bioreactor design, enzyme systems for pollutant degradation, CO₂ bio-capture, biodegradable batteries, and circular bioeconomy models. A frequent keynote speaker and conference organizer, he has chaired international symposia on Advanced Materials, Blue Technology, and Sustainable Manufacturing. His editorial and reviewer roles in high-impact journals and his membership in the Mexican Academy of Sciences underscore his academic leadership. Recognized as a Highly Cited Researcher (Thomson Reuters, 2016) and National Researcher Level III (CONACyT, Mexico), Prof. Dr. Roberto Parra Saldívar’s pioneering contributions have significantly advanced global sustainability through biotechnology-driven innovation.

Profiles: Scopus | ORCID | Google Scholar | ResearchGate | Sci Profiles | Web of Science | Loop

Featured Publications

1. Cuellar‐Bermudez, S. P., Aguilar‐Hernandez, I., Cardenas‐Chavez, D. L., Ornelas‐Soto, N., Romero‐Ogawa, M. A., & Parra‐Saldivar, R. (2015). Extraction and purification of high‐value metabolites from microalgae: Essential lipids, astaxanthin and phycobiliproteins. Microbial Biotechnology, 8(2), 190–209. https://doi.org/10.1111/1751-7915.12167

2. Arevalo-Gallegos, A., Ahmad, Z., Asgher, M., Parra-Saldivar, R., & Iqbal, H. M. N. (2017). Lignocellulose: A sustainable material to produce value-added products with a zero waste approach—A review. International Journal of Biological Macromolecules, 99, 308–318. https://doi.org/10.1016/j.ijbiomac.2017.02.097

3. Bilal, M., Asgher, M., Parra-Saldivar, R., Hu, H., Wang, W., Zhang, X., & Iqbal, H. M. N. (2017). Immobilized ligninolytic enzymes: An innovative and environmentally responsive technology to tackle dye-based industrial pollutants—A review. Science of the Total Environment, 576, 646–659. https://doi.org/10.1016/j.scitotenv.2016.10.137

4. Bhattacharyya, S. S., Ros, G. H., Furtak, K., Iqbal, H. M. N., & Parra-Saldívar, R. (2022). Soil carbon sequestration—An interplay between soil microbial community and soil organic matter dynamics. Science of the Total Environment, 815, 152928. https://doi.org/10.1016/j.scitotenv.2021.152928

5. Alemán-Nava, G. S., Casiano-Flores, V. H., Cárdenas-Chávez, D. L., Díaz-Chávez, R., Scarlat, N., Mahlknecht, J., Dallemand, J.-F., & Parra-Saldivar, R. (2014). Renewable energy research progress in Mexico: A review. Renewable and Sustainable Energy Reviews, 32, 140–153. https://doi.org/10.1016/j.rser.2014.01.004

Caichao Wan | Renewable Energy and Green Technologies | Nanotechnology Innovation Award

Prof. Dr. Caichao Wan | Renewable Energy and Green Technologies | Nanotechnology Innovation Award

Full Professor | Central South University of Forestry and Technology | China

Prof. Dr. Caichao Wan is a globally recognized materials scientist and full professor at the Central South University of Forestry and Technology, China. With over 3,585 citations, 84 Scopus-indexed publications, and an h-index of 37, he stands among the leading researchers in biomass-based functional materials and sustainable energy systems. His research focuses on biomass-derived polymers, carbon materials, and nanocomposites for applications in energy storage, solar cells, and green bioresource utilization. Prof. Dr. Caichao Wan has published extensively in prestigious journals such as Advanced Energy Materials, ACS Nano, Advanced Science, and Coordination Chemistry Reviews, where his works have significantly influenced the fields of biomass valorization, renewable materials engineering, and nanostructured energy devices. He has authored and co-edited three scientific books and contributed over eighty first or corresponding-author papers to SCI and Scopus journals, reflecting his strong research leadership and innovation capacity. His research team has completed or is undertaking twelve major research projects, many funded by the National Natural Science Foundation of China, and he has secured five patents that demonstrate practical innovations in functional and bio-based materials. In addition, Prof. Dr. Caichao Wan has collaborated with researchers from the USA, UK, Japan, and Australia, contributing to cross-disciplinary advancements in nanotechnology and sustainable chemistry. An IAAM Fellow and recipient of the Liang Xi Forestry Science and Technology First Prize, Prof. Wan also serves as an editorial board member for Nano Research and InfoMat, reflecting his international standing in materials science. His work bridges fundamental science and applied engineering, promoting green innovation, circular economy, and next-generation bioenergy technologies. Through his impactful publications, patents, and global collaborations, Prof. Dr. Caichao Wan continues to advance the sustainable transformation of materials science and renewable energy research.

Profiles: Scopus | ORCID | ResearchGate | Sci Profiles | Sci Space

Featured Publications

1. Yuan, Y., & Wan, C. (2022). Dual application of waste grape skin for photosensitizers and counter electrodes of dye-sensitized solar cells. Nanomaterials, 12(3), 563. https://doi.org/10.3390/nano12030563

2. Tian, W., Wan, C., Yong, K.-T., Liu, S., Wei, S., Zhang, C., Liu, X., Su, J., Cheng, W., & Wu, Y. (2022). Learning from nature: Constructing a smart bionic structure for high-performance glucose sensing in human serums. Advanced Functional Materials, 32(1), 2106958. https://doi.org/10.1002/adfm.202106958

3. Wan, C., Zhang, L., Yong, K.-T., Li, J., & Wu, Y. (2021). Recent progress in flexible nanocellulosic structures for wearable piezoresistive strain sensors. Journal of Materials Chemistry C, 9(35), 11909–11928. https://doi.org/10.1039/D1TC02360H

4. Wan, C., Liu, X., Huang, Q., Cheng, W., Su, J., & Wu, Y. (2021). A brief review of transparent wood: Synthetic strategy, functionalization and applications. Current Organic Synthesis, 18(6), 789–803. https://doi.org/10.2174/1570179418666210614141032

5. Wei, S., Wan, C., Jiao, Y., Li, X., Li, J., & Wu, Y. (2020). 3D nanoflower-like MoSe₂ encapsulated with hierarchically anisotropic carbon architecture: A new and free-standing anode with ultra-high areal capacitance for asymmetric supercapacitors. Chemical Communications, 56(3), 434–437. https://doi.org/10.1039/C9CC07362K

Van-Trung Ha | Renewable Energy | Young Scientist Award

Mr. Van-Trung Ha | Renewable Energy | Young Scientist Award

Lecturer | Wuhan University | China

Mr. Van-Trung Ha, currently a Lecturer and Ph.D. researcher in Regional Economics at Wuhan University, China, has demonstrated a robust interdisciplinary research trajectory combining tourism studies, rural development, and environmental economics. His work emphasizes the nexus between agritourism, sustainability, and economic growth in Southeast Asia. With 5 citations from 5 documents and an h-index of 1, his scholarly influence is steadily expanding through high-impact international publications and conference contributions. He has authored and co-authored several peer-reviewed articles in SCOPUS- and SCI-indexed journals, including Journal of Environmental Management (Q1, SCIE), Heliyon (Q1, SCIE), Humanities and Social Sciences Communications (Q1, SSCI), Frontiers in Public Health (Q1, SCIE), and Advances in Hospitality and Tourism Research (Q3). His research covers diverse themes such as tourism-led growth models, green innovation for environmental sustainability, FDI and renewable energy impacts on economic development, and the socio-economic resilience of tourism amid crises such as COVID-19. Mr. Van-Trung Ha’s research contributions also extend to rural and cultural tourism development, particularly agritourism in Vietnam, with studies published in Journal of Gastronomy and Tourism and Journal of Tourism History (Q1). His works on preserving agricultural lifestyles as a sustainable tourism strategy have received international recognition. He has served as Editorial Board Member for the Asian Development Policy Review (SCOPUS Q4) and as an Advisory Board Member of the World Conference on Learning and Education Research (WCLER-23). As a peer reviewer, he has contributed to respected journals such as Tourism and Hospitality Research, Case Studies in the Environment (Q3), and Sage Open. Mr. Van-Trung Ha’s academic pursuits align with advancing sustainable tourism policies and integrating environmental and economic frameworks in tourism management. His ongoing research at Wuhan University focuses on the dynamic interrelations between tourism, globalization, renewable energy, and sustainable regional development across ASEAN economies.

Profiles: Scopus | ORCID | Google Scholar | ResearchGate | Web of Science | Scholar GPS | Loop | Academia

Featured Publications

  1. Ha, V. T., Lichang, L., & Thuan, D. T. Q. (2024). Sustainable development in Southeast Asia: The nexus of tourism, finance, and environment. Heliyon, 10(24), e40829.

  2. Ha, V. T., & Mohanty, P. P. (2021). Exploring the level of tourist satisfaction in agritourism: A reflection of Tra Que village, Vietnam. Gastronomy and Tourism, 5(2), 107–116.

  3. Ha, V. T., & Mohanty, P. P. (2023). Activities of agricultural way of life – a key to attract tourists in agritourism: A study from Tra Que traditional village (Hoi An, Quang Nam, Viet Nam). Journal of Tourism History, 15(1), 65–83.

  4. Ha, V. T., & Dao, D. Q. (2024). Weaving the tastes of tradition: Uncovering the threads of India’s culinary identity amid globalisation. Research in Hospitality Management, 14(2), 150–158.

  5. Ha, V. T. (2025). Tourism, FDI, renewable energy, and growth: An analysis of ASEAN countries. Revista Turismo & Desenvolvimento (RT&D) / Journal of Tourism & Development, 48, 599–623.

 

Musavir Anwar | Environmental Economics | Best Researcher Award

Mr. Musavir Anwar | Environmental Economics | Best Researcher Award

Lecturer, Sindh Agriculture University, Pakistan.

Mr. Musavir Anwar is an emerging scholar in Agricultural Economics and Environmental Economics, with a particular focus on sustainable development, low-carbon pathways, and the adoption of agricultural technologies. His research explores the intersection of economic development, environmental sustainability, and policy-driven incentives, emphasizing the role of electricity, agriculture, and financial systems in shaping environmental outcomes. A significant aspect of his work involves analyzing consumer behavior and adoption patterns in agricultural and environmental contexts. He has examined the diffusion of production and protection technologies in crops such as sugarcane, providing empirical insights into the factors influencing technology uptake in Sindh, Pakistan. His studies also address behavioral incentives for reducing environmental degradation, exemplified by his investigation into consumer responses to policies aimed at minimizing plastic bag usage. Methodologically, Mr. Musavir Anwar employs a diverse set of quantitative and statistical tools, including econometric modeling, survey-based data analysis, and environmental impact assessment. His proficiency with software such as SPSS, STATA, R-Studio, Python, and Eviews supports rigorous data-driven research, while his familiarity with multimedia and graphical design enhances the visualization and dissemination of complex findings. Mr. Musavir Anwar’s research contributions include publications in high-impact journals, notably the Journal of Environmental Management (SCI-Q1), where he analyzed Kazakhstan’s transition to a low-carbon future, highlighting the roles of energy, agriculture, and financial development on emissions. He has also contributed to international conferences on sustainable development and agricultural sciences, presenting empirical studies on crop management and environmental economics. Through his work, Mr. Musavir Anwar demonstrates a commitment to advancing knowledge on sustainable agricultural practices, environmental policy, and economic mechanisms that promote low-carbon and resource-efficient development. His scholarly impact is reflected in his publications, conference presentations, and research collaborations, establishing him as a promising contributor to the fields of agricultural and environmental economics.

Profile: Scopus | ORCID | Google Scholar | ResearchGate | Sci Profiles

Featured Publications

  • Anwar, M., Jamali, R., Hyder, H., & Wang, J. (2025). Kazakhstan’s path to a low-carbon future: Investigating the impact of electricity, agriculture, and financial development on emissions. Journal of Environmental Management, 394, 127627.

  • Unar, A. U., Rustamani, M. A., Pahore, W. A., Chachar, I. B., & Amber, A. (2018, July 5). Effects of different salinity levels on wheat varieties at seedling stage. In Proceedings of the 1st International Conference on Global Sustainable Development: Challenges and Solutions (ICGSDCS–2018).

  • Jogi, N., Shar, I., Chachar, I. B., Rustamani, M. A., & Gadani, S. A. (2018, July 5). Study of diffusion and adoption of production and protection technologies of sugarcane crop in Taluka Ubauro, District Ghotki of Sindh Province. In Proceedings of the 1st International Conference on Global Sustainable Development: Challenges and Solutions (ICGSDCS–2018).

 

Zhong Zhang | Environmental Sciences | Best Researcher Award

Prof. Zhong Zhang | Environmental Sciences | Best Researcher Award

Vice President, Shandong Second Medical University, China

Prof. Zhong Zhang is the Vice President of Shandong Second Medical University, where he also serves as a senior academic leader in the fields of pathogen biology, parasitology, microbiology and environmental sciences. He holds a Ph.D. in Pathogen Biology, obtained from a leading Chinese university, with specialization in microbial ecology and host–pathogen interactions. His research primarily focuses on the ecological and molecular interactions between pathogenic microorganisms, insects, and environmental factors, particularly exploring how intestinal commensal bacteria and bacteriophages influence the gut microbiota and developmental biology of insects. Prof. Zhong Zhang’s recent work has introduced novel phage-based precision regulation strategies to modify the gut microbiome of housefly larvae, revealing key mechanisms that link microbial balance to host growth and health. He has also pioneered investigations into the effects of graphene on bacterium–phage interactions in aquatic ecosystems and used multi-omics biological approaches to uncover how antibiotics reshape microbial and transcriptomic landscapes during larval development. Throughout his career, Prof. Zhong Zhang has held influential academic and research roles, including Principal Expert for the Shandong Province “12th Five-Year Plan” Key Discipline in Pathogen Biology, where he led several national and provincial-level research projects advancing environmental microbiology and vector-borne disease control. His scholarly impact includes 64 peer-reviewed publications, 722 citations, and an h-index of 16 (Scopus), reflecting sustained contributions to his field. Recognized for his excellence, he received the First Prize of the Shandong Higher Education Institutions Outstanding Research Achievement Award and the title of “Shandong Provincial Young and Middle-aged Expert with Outstanding Contributions.” He actively contributes to the scientific community as Vice President of the Shandong Entomological Society, Vice Chair of the Urban Entomology Committee and Medical Parasitology Branch, and Chair of the Medical Entomology Committee under the Entomological Society of China. Prof. Zhong Zhang’s interdisciplinary research bridges microbiology, entomology, and environmental science, offering innovative insights into sustainable pest management, microbial ecology, and environmental health. His vision is to advance global bioscience innovation by integrating microbiome research and ecological restoration to support sustainable ecosystems and public health resilience.

Profile: Scopus | ORCID | Sci Profiles

Featured Publications

1. Kong, X., Wang, S., Li, J., Li, Y., Zhang, R., & Zhang, Z. (2025). Kasugamycin and validamycin differentially inhibit housefly larval growth through gut microbiota regulation. Ecotoxicology and Environmental Safety, 279, 119098.

2. ang, L., Liu, X., Lin, S., Wang, L., Liang, J., & Zhang, Z. (2025). Parasitic plant Cistanche tubulosa shapes the bacterial community structure and functional composition of the salt-tolerant host Tamarix chinensis across different parasitic statuses. Environmental Microbiome, 20, 746.

3. Han, Y.-N., Dong, L., Sun, L.-L., Zhang, Z., & Han, H.-H. (2025). Excited-state-altering ratiometric fluorescent probes for the response of β-galactosidase in senescent cells. Molecules, 30(6), 1221.

4. Yin, Y., Wang, S., Li, Y., Kong, X., Zhang, R., & Zhang, Z. (2024). Antagonistic effect of the beneficial bacterium Enterobacter hormaechei against the heavy metal Cu²⁺ in housefly larvae. Ecotoxicology and Environmental Safety, 270, 116077.

5. Zhang, K., Wang, S., Li, Y., Yao, D., Zhang, R., & Zhang, Z. (2024). Application of bacteria and bacteriophage cocktails for biological control of houseflies. Parasites & Vectors, 17, 82.

 

Abouelnadar El Salem | Sustainable Agriculture | Best Researcher Award

Assist. Prof. Dr. Abouelnadar El Salem | Sustainable Agriculture | Best Researcher Award

Senior Researcher, Yellow River Delta Intelligent Agricultural Machinery Equipment Industry Academy, China

Assist. Prof. Dr. Abouelnadar El Salem is a Senior Researcher at the Department of Soil and Water Conservation, Desert Research Center (DRC), Cairo, Egypt, and affiliated with the Yellow River Delta Intelligent Agricultural Machinery Equipment Industry Academy, China. He earned his Ph.D. in Agricultural Mechanization Engineering from Huazhong Agricultural University, China (2022), where his research focused on experimental soil adhesion reduction and simulation of soil–tool interaction under paddy field conditions based on bionics. He also holds an M.Sc. in Farm Machinery and Power Engineering from Ain Shams University, Egypt (2017), and a B.Sc. in Agricultural Engineering from Kafrelsheikh University, Egypt (2006, with honors). Dr. El Salem’s primary research interests lie in reducing soil adhesion and friction at the soil–tool interface using bio-inspired microstructures and low-surface-energy polymers, modeling soil–tool interactions with the Discrete Element Method (DEM), assessing and designing rainwater harvesting systems, and monitoring tillage- and rainfall-induced soil erosion under diverse land-use conditions. He has held key academic and research positions, including Researcher (Doctorate Holder) at DRC, supervising master’s students and conducting peer-reviewed research (2022–Present), Assistant Researcher at Huazhong Agricultural University (2018–2022), and Agricultural Engineer at the Agricultural Research Center, Egypt (2007–2012). His major contributions include innovations in soil conservation techniques, DEM-based mechanistic models of soil–tool interactions, sustainable water resource management, and practical recommendations for arid and semi-arid agriculture. He has published 15 documents, accumulated 136 citations, and holds an h-index of 7. Dr. El Salem has received recognition for his international collaborations in soil mechanization research and is actively engaged in peer-review and scientific societies related to agricultural engineering. His work advances sustainable agricultural mechanization, soil erosion control, and climate-resilient farming, providing practical solutions for global food security and water management. His vision is to integrate mechanization engineering and soil conservation innovations to benefit society, industry, and scientific research worldwide, while mentoring the next generation of agricultural engineers and researchers.

Profile: Scopus | ORCID | ResearchGate | Sci Profiles | Scilit

Featured Publications

1. Salem, A. E., Shang, S., Wang, D., Zhang, G., Wang, H., Abdeen, M. A., & Shehabeldeen, T. A. (2026). Developing an adequate DEM model to simulate soil-tool interactions under sticky soil conditions. Soil and Tillage Research, 256, 106893.

2. Salem, A. E., Wang, H., Gao, Y., Zha, X., Abdeen, M. A., & Zhang, G. (2021). Effect of biomimetic surface geometry, soil texture, and soil moisture content on the drag force of soil-touching parts. Applied Sciences, 11, 8927–8938.

3. Salem, A. E., Zhang, G. Z., Abdeen, M. A. M., & Wang, H. C. (2022). Optimizing the adhesion of soil-touching parts based on biomimetic concepts using the Taguchi method. International Journal of Agricultural and Biological Engineering, 15(1), 147–154.

4. Salem, A. E., Zhang, G., Wang, H., Salem, H. M., Abdalla, M. A., & Ghazy, A. A. (2023). The effect of integrating a bio-inspired convex structure with a low-surface energy polymer on soil adhesion and friction. Journal of Terramechanics, 109, 93–100.

5. Abdeen, M. A., & Salem, A. E., Zhang, G. (2021). Longitudinal axial flow rice thresher performance optimization using the Taguchi technique. Agriculture, 11, 88.

 

Jiajia Cai | Environmental Engineering | Best Researcher Award

Dr. Jiajia Cai | Environmental Engineering | Best Researcher Award

Lecture, Anhui University of Technology, China

Dr. Jiajia Cai is a Lecturer at the School of Energy and Environmental Engineering, Anhui University of Technology, China, where she leads research on photoelectrochemical corrosion protection, renewable energy conversion, and AI-driven materials discovery. She earned her Ph.D. in Materials Science from Northeastern University in 2016, following an M.Sc. in Analytical Chemistry (2011) and a B.Sc. in Applied Chemistry (2009), all from Northeastern University, China. Her research focuses on developing advanced photoelectrochemical materials for sustainable energy applications, including photoelectrocathodic protection (PCP) for metals, green hydrogen production via water splitting, and AI-assisted design of novel semiconductor photoanodes. Professionally, Dr. Jiajia Cai has served as a Lecturer at Anhui University of Technology since 2016, a Postdoctoral Researcher at the National University of Singapore (2019–2020) focusing on optimization of photoanode materials, and a Visiting Scholar at Tsinghua University (2024–2025) emphasizing AI applications in materials science. Her key contributions include the design and fabrication of highly efficient photoanodes using morphology engineering, heterojunction construction and cocatalyst loading strategies, bridging fundamental photoelectrochemistry with practical corrosion prevention technologies and publishing over 50 SCI-indexed papers (58 documents, 877 citations, h-index 17), along with 4 patents under publication or review. She has led multiple national and provincial research projects, including funding from the National Natural Science Foundation of China and Anhui Provincial Natural Science Foundation, as well as support from the Key Lab for Anisotropy and Texture of Materials (ATM), Ministry of Education. Dr. Jiajia Cai is an active member of the Chinese Chemical Society and collaborates with leading institutions such as Tsinghua University, National University of Singapore, and Northeastern University. Her work significantly advances sustainable energy solutions, corrosion protection, and AI-driven materials discovery, contributing to environmental engineering, industrial innovation, and global scientific knowledge. Dr. Jiajia Cai’s research excellence, leadership, and vision position her to continue making transformative contributions to renewable energy and advanced material technologies worldwide.

Profile: Scopus | ORCID | Google Scholar | ResearchGate | Sci Profiles | Scilit

Featured Publications

1. Cai, J., Zhang, Z., Zu, S., Cui, A., Li, X., Xie, Q., Mao, K., & Chen, J. (2025). Built-in electric field in BiVO₄-SnO₂ heterostructure for enhanced photoelectrochemical H₂O₂ production. Fuel, 405, 136762.

2. Zhu, S., Cai, Z., Wang, Y., Wang, J., Cai, J., Xie, Q., & Huang, Z. (2025). Enhanced photoelectrochemical cathodic protection on steel in marine environment by cascade heterojunctions. Construction and Building Materials, 493, 143255.

3. Zhu, S., Xu, F., Wang, Y., Cai, J., Xie, Q., Yang, Y., & Huang, Z. (2025). Experimental study on heat transfer characteristics of a moving single-nozzle jet impingement. ISIJ International, 65(9), 1348–1358.

4. Xie, Q., Cai, Z., Wang, Y., Cai, J., Wang, J., & Sun, S. (2025). Efficient Z-scheme of 2D ZnIn₂S₄/3D TiO₂ for enhanced photoelectrochemical cathodic protection. Journal of Environmental Chemical Engineering, 13(5), 118305.

5. Chen, Q., Zhu, S., Xin, Z., Wang, D., Cai, J., Li, H., & Ding, S. (2024). Surfactant-assisted synthesis of NiCo alloy with specific nanopore architecture as a bifunctional electrocatalyst for rechargeable zinc-air batteries. Functional Materials Letters, 17(04), 451021.

 

Dhekra Ben Amara | Environmental Science | Best Researcher Award

Dr. Dhekra Ben Amara | Environmental Science | Best Researcher Award

Associate professor, Qingdao Hengxing University of Science and Technology, China

Dr. Dhekra Ben Amara is an agricultural economist and sustainability researcher specializing in environmental science, eco-innovation, climate change and circular economy, with a strong focus on sustainable development and green growth. She earned her Engineering degree in Agricultural and Agri-Food Economics and Management from the National Agronomic Institute of Tunisia in 2010, followed by an M.Sc. in Economy of Agriculture, Agri-Food and Environment in 2013 and completed her Ph.D. in Agricultural Economics and Management at Northeast Forestry University, Harbin, China, in 2021. Her professional experience includes serving as Administrative Officer in the Internship and International Cooperation Department at ESPRIT: Private High School of Engineering and Technologies in Tunisia (2021–2022), where she promoted student engagement and international partnerships, followed by her postdoctoral fellowship at Henan University, China (2022–2025), where she focused on eco-innovation, carbon emissions, foreign investment and Africa-China cooperation in green growth and food security. In 2025, she was appointed Associate Professor at the School of Industry and City, Qingdao Hengxing University of Science and Technology, China. Her research interests center on sustainability, eco-innovation, climate change, circular economy, food security and resource and environmental management and she has actively contributed to international projects such as the China–Tunisia biomass valorization initiative promoting bio-circular green economies. Skilled in research tools such as IBM SPSS, SPSS AMOS, SmartPLS3, STATA, GeoDA and ArcMap, she demonstrates strong technical and analytical expertise. She has authored 12 Scopus-indexed publications with 245 citations and an h-index of 8, with articles published in leading journals including Journal of Cleaner Production and Environmental Science and Pollution Research. Her achievements have been recognized with the NEFU Outstanding Graduate Award (2021), a Second Prize at the NEFU International Students’ Academic Forum and an Excellence Award in the “My Story in NEFU” contest. With her international academic background, growing research impact and leadership in eco-innovation, Dr. Dhekra Ben Amara is well-positioned to advance environmental sustainability research and contribute to global solutions addressing climate change and sustainable development.

Profile: Scopus | ORCID | Google Scholar | ResearchGate | Sci Profiles | Web of Science | ACM Digital Library | LinkedIn  

Featured Publications

1. Ben Amara, D., & Chen, H. (2020). A mediation-moderation model of environmental and eco-innovation orientation for sustainable business growth. Environmental Science and Pollution Research, 27(14), 16916–16928.

2. Ben Amara, D., & Chen, H. (2022). Driving factors for eco-innovation orientation: Meeting sustainable growth in Tunisian agribusiness. International Entrepreneurship and Management Journal, 18(2), 713–732.

3. Ben Amara, D., & Qiao, J. (2023). From economic growth to inclusive green growth: How do carbon emissions, eco-innovation and international collaboration develop economic growth and tackle climate change? Journal of Cleaner Production, 425, 138986.

4. Ben Amara, D., & Chen, H. (2020). Investigating the effect of multidimensional network capability and eco-innovation orientation for sustainable performance. Clean Technologies and Environmental Policy, 22(6), 1297–1309.

5. Ben Amara, D., & Chen, H. (2021). The impact of participative decision-making on eco-innovation capability: The mediating role of motivational eco-innovation factors. Environment, Development and Sustainability, 23(5), 6966–6986.