Prof. Zhong Zhang | Environmental Sciences | Best Researcher Award
Vice President, Shandong Second Medical University, China
Prof. Zhong Zhang is the Vice President of Shandong Second Medical University, where he also serves as a senior academic leader in the fields of pathogen biology, parasitology, microbiology and environmental sciences. He holds a Ph.D. in Pathogen Biology, obtained from a leading Chinese university, with specialization in microbial ecology and host–pathogen interactions. His research primarily focuses on the ecological and molecular interactions between pathogenic microorganisms, insects, and environmental factors, particularly exploring how intestinal commensal bacteria and bacteriophages influence the gut microbiota and developmental biology of insects. Prof. Zhong Zhang’s recent work has introduced novel phage-based precision regulation strategies to modify the gut microbiome of housefly larvae, revealing key mechanisms that link microbial balance to host growth and health. He has also pioneered investigations into the effects of graphene on bacterium–phage interactions in aquatic ecosystems and used multi-omics biological approaches to uncover how antibiotics reshape microbial and transcriptomic landscapes during larval development. Throughout his career, Prof. Zhong Zhang has held influential academic and research roles, including Principal Expert for the Shandong Province “12th Five-Year Plan” Key Discipline in Pathogen Biology, where he led several national and provincial-level research projects advancing environmental microbiology and vector-borne disease control. His scholarly impact includes 64 peer-reviewed publications, 722 citations, and an h-index of 16 (Scopus), reflecting sustained contributions to his field. Recognized for his excellence, he received the First Prize of the Shandong Higher Education Institutions Outstanding Research Achievement Award and the title of “Shandong Provincial Young and Middle-aged Expert with Outstanding Contributions.” He actively contributes to the scientific community as Vice President of the Shandong Entomological Society, Vice Chair of the Urban Entomology Committee and Medical Parasitology Branch, and Chair of the Medical Entomology Committee under the Entomological Society of China. Prof. Zhong Zhang’s interdisciplinary research bridges microbiology, entomology, and environmental science, offering innovative insights into sustainable pest management, microbial ecology, and environmental health. His vision is to advance global bioscience innovation by integrating microbiome research and ecological restoration to support sustainable ecosystems and public health resilience.
1. Kong, X., Wang, S., Li, J., Li, Y., Zhang, R., & Zhang, Z. (2025). Kasugamycin and validamycin differentially inhibit housefly larval growth through gut microbiota regulation. Ecotoxicology and Environmental Safety, 279, 119098.
2. ang, L., Liu, X., Lin, S., Wang, L., Liang, J., & Zhang, Z. (2025). Parasitic plant Cistanche tubulosa shapes the bacterial community structure and functional composition of the salt-tolerant host Tamarix chinensis across different parasitic statuses. Environmental Microbiome, 20, 746.
3. Han, Y.-N., Dong, L., Sun, L.-L., Zhang, Z., & Han, H.-H. (2025). Excited-state-altering ratiometric fluorescent probes for the response of β-galactosidase in senescent cells. Molecules, 30(6), 1221.
4. Yin, Y., Wang, S., Li, Y., Kong, X., Zhang, R., & Zhang, Z. (2024). Antagonistic effect of the beneficial bacterium Enterobacter hormaechei against the heavy metal Cu²⁺ in housefly larvae. Ecotoxicology and Environmental Safety, 270, 116077.
5. Zhang, K., Wang, S., Li, Y., Yao, D., Zhang, R., & Zhang, Z. (2024). Application of bacteria and bacteriophage cocktails for biological control of houseflies. Parasites & Vectors, 17, 82.
Dr. Jiajia Cai | Environmental Engineering | Best Researcher Award
Lecture, Anhui University of Technology, China
Dr. Jiajia Cai is a Lecturer at the School of Energy and Environmental Engineering, Anhui University of Technology, China, where she leads research on photoelectrochemical corrosion protection, renewable energy conversion, and AI-driven materials discovery. She earned her Ph.D. in Materials Science from Northeastern University in 2016, following an M.Sc. in Analytical Chemistry (2011) and a B.Sc. in Applied Chemistry (2009), all from Northeastern University, China. Her research focuses on developing advanced photoelectrochemical materials for sustainable energy applications, including photoelectrocathodic protection (PCP) for metals, green hydrogen production via water splitting, and AI-assisted design of novel semiconductor photoanodes. Professionally, Dr. Jiajia Cai has served as a Lecturer at Anhui University of Technology since 2016, a Postdoctoral Researcher at the National University of Singapore (2019–2020) focusing on optimization of photoanode materials, and a Visiting Scholar at Tsinghua University (2024–2025) emphasizing AI applications in materials science. Her key contributions include the design and fabrication of highly efficient photoanodes using morphology engineering, heterojunction construction and cocatalyst loading strategies, bridging fundamental photoelectrochemistry with practical corrosion prevention technologies and publishing over 50 SCI-indexed papers (58 documents, 877 citations, h-index 17), along with 4 patents under publication or review. She has led multiple national and provincial research projects, including funding from the National Natural Science Foundation of China and Anhui Provincial Natural Science Foundation, as well as support from the Key Lab for Anisotropy and Texture of Materials (ATM), Ministry of Education. Dr. Jiajia Cai is an active member of the Chinese Chemical Society and collaborates with leading institutions such as Tsinghua University, National University of Singapore, and Northeastern University. Her work significantly advances sustainable energy solutions, corrosion protection, and AI-driven materials discovery, contributing to environmental engineering, industrial innovation, and global scientific knowledge. Dr. Jiajia Cai’s research excellence, leadership, and vision position her to continue making transformative contributions to renewable energy and advanced material technologies worldwide.
1. Cai, J., Zhang, Z., Zu, S., Cui, A., Li, X., Xie, Q., Mao, K., & Chen, J. (2025). Built-in electric field in BiVO₄-SnO₂ heterostructure for enhanced photoelectrochemical H₂O₂ production. Fuel, 405, 136762.
2. Zhu, S., Cai, Z., Wang, Y., Wang, J., Cai, J., Xie, Q., & Huang, Z. (2025). Enhanced photoelectrochemical cathodic protection on steel in marine environment by cascade heterojunctions. Construction and Building Materials, 493, 143255.
3. Zhu, S., Xu, F., Wang, Y., Cai, J., Xie, Q., Yang, Y., & Huang, Z. (2025). Experimental study on heat transfer characteristics of a moving single-nozzle jet impingement. ISIJ International, 65(9), 1348–1358.
4. Xie, Q., Cai, Z., Wang, Y., Cai, J., Wang, J., & Sun, S. (2025). Efficient Z-scheme of 2D ZnIn₂S₄/3D TiO₂ for enhanced photoelectrochemical cathodic protection. Journal of Environmental Chemical Engineering, 13(5), 118305.
5. Chen, Q., Zhu, S., Xin, Z., Wang, D., Cai, J., Li, H., & Ding, S. (2024). Surfactant-assisted synthesis of NiCo alloy with specific nanopore architecture as a bifunctional electrocatalyst for rechargeable zinc-air batteries. Functional Materials Letters, 17(04), 451021.
Dr. Dhekra Ben Amara | Environmental Science | Best Researcher Award
Associate professor, Qingdao Hengxing University of Science and Technology, China
Dr. Dhekra Ben Amara is an agricultural economist and sustainability researcher specializing in environmental science, eco-innovation, climate change and circular economy, with a strong focus on sustainable development and green growth. She earned her Engineering degree in Agricultural and Agri-Food Economics and Management from the National Agronomic Institute of Tunisia in 2010, followed by an M.Sc. in Economy of Agriculture, Agri-Food and Environment in 2013 and completed her Ph.D. in Agricultural Economics and Management at Northeast Forestry University, Harbin, China, in 2021. Her professional experience includes serving as Administrative Officer in the Internship and International Cooperation Department at ESPRIT: Private High School of Engineering and Technologies in Tunisia (2021–2022), where she promoted student engagement and international partnerships, followed by her postdoctoral fellowship at Henan University, China (2022–2025), where she focused on eco-innovation, carbon emissions, foreign investment and Africa-China cooperation in green growth and food security. In 2025, she was appointed Associate Professor at the School of Industry and City, Qingdao Hengxing University of Science and Technology, China. Her research interests center on sustainability, eco-innovation, climate change, circular economy, food security and resource and environmental management and she has actively contributed to international projects such as the China–Tunisia biomass valorization initiative promoting bio-circular green economies. Skilled in research tools such as IBM SPSS, SPSS AMOS, SmartPLS3, STATA, GeoDA and ArcMap, she demonstrates strong technical and analytical expertise. She has authored 12 Scopus-indexed publications with 245 citations and an h-index of 8, with articles published in leading journals including Journal of Cleaner Production and Environmental Science and Pollution Research. Her achievements have been recognized with the NEFU Outstanding Graduate Award (2021), a Second Prize at the NEFU International Students’ Academic Forum and an Excellence Award in the “My Story in NEFU” contest. With her international academic background, growing research impact and leadership in eco-innovation, Dr. Dhekra Ben Amara is well-positioned to advance environmental sustainability research and contribute to global solutions addressing climate change and sustainable development.
1. Ben Amara, D., & Chen, H. (2020). A mediation-moderation model of environmental and eco-innovation orientation for sustainable business growth. Environmental Science and Pollution Research, 27(14), 16916–16928.
2. Ben Amara, D., & Chen, H. (2022). Driving factors for eco-innovation orientation: Meeting sustainable growth in Tunisian agribusiness. International Entrepreneurship and Management Journal, 18(2), 713–732.
3. Ben Amara, D., & Qiao, J. (2023). From economic growth to inclusive green growth: How do carbon emissions, eco-innovation and international collaboration develop economic growth and tackle climate change? Journal of Cleaner Production, 425, 138986.
4. Ben Amara, D., & Chen, H. (2020). Investigating the effect of multidimensional network capability and eco-innovation orientation for sustainable performance. Clean Technologies and Environmental Policy, 22(6), 1297–1309.
5. Ben Amara, D., & Chen, H. (2021). The impact of participative decision-making on eco-innovation capability: The mediating role of motivational eco-innovation factors. Environment, Development and Sustainability, 23(5), 6966–6986.
Assoc. Prof. Dr. Weina Zhang | Environmental | Best Researcher Award
Associate Professor at Guangdong University of Technology | China
Assoc. Prof. Dr. Weina Zhang is a distinguished environmental scientist specializing in the transformation mechanisms of atmospheric pollutants, formation and growth of fine particulate matter, and the climate effects of aerosols. She serves as an Associate Professor at the School of Environmental Science and Engineering, Guangdong University of Technology, under the prestigious “Hundred Talents Program A”. A core member of the Institute of Environmental Health and Pollution Control, she has made impactful contributions through both theoretical modeling and experimental investigations. Dr. Zhang’s research bridges chemistry, environmental science, and climate studies, with publications in leading journals such as Journal of the American Chemical Society, Environmental Science: Nano, Atmospheric Chemistry and Physics, and Science of the Total Environment. She has successfully led multiple national, provincial, and municipal research projects, and contributed to high-profile programs such as the Guangdong “Pearl River Talent Program.” Recognized for her outstanding academic achievements, she has received prestigious group awards including the Guangdong Province May 1st Labor Award and the Guangdong Youth May 4th Medal. Dedicated to nurturing young scientists, she integrates her research expertise into teaching and mentoring, inspiring students from diverse backgrounds to advance the frontiers of environmental science and atmospheric chemistry.
Dr. Weina Zhang’s academic journey reflects a strong foundation in engineering and environmental sciences, underpinned by rigorous research training. She obtained her Bachelor of Engineering degree from the China University of Geosciences (Beijing), where she specialized in exploration technology and engineering. Her undergraduate studies provided her with a robust understanding of geological processes, environmental monitoring, and engineering methodologies. She then pursued advanced research at the University of Chinese Academy of Sciences, conducting her doctoral work at the Wuhan Institute of Rock and Soil Mechanics. There, she focused on geotechnical mechanics and engineering safety, gaining expertise in both experimental analysis and computational modeling. Her doctoral research laid the groundwork for her later interdisciplinary work that combines chemistry, physics, and environmental engineering. Through this academic progression, Dr. Zhang developed a rare skill set that bridges multiple disciplines, enabling her to address complex environmental challenges at molecular, local, and global scales. Her education not only equipped her with advanced technical skills but also fostered her capacity to lead multidisciplinary research, integrating theoretical simulations with real-world environmental problem-solving approaches in atmospheric pollution and climate effect studies.
Professional Experience
Dr. Weina Zhang has established herself as a leading researcher and educator in atmospheric environmental science. She currently holds the position of Associate Professor at the School of Environmental Science and Engineering, Guangdong University of Technology, where she plays a central role in advancing both research and teaching in the field. She is affiliated with the Institute of Environmental Health and Pollution Control, contributing as a core member to pioneering studies on emerging pollutants and their environmental health implications. Prior to her current role, she undertook postdoctoral research at the same institution, working on projects that integrated computational chemistry with environmental monitoring to understand the transformation and health impacts of atmospheric pollutants. Her professional portfolio includes leadership in multiple national, provincial, and municipal research projects, as well as key participation in large-scale programs such as the National Key R&D Program of China. She collaborates extensively with interdisciplinary teams, applying theoretical simulations to practical environmental challenges. Her professional contributions extend to mentoring graduate students, designing specialized courses, and engaging in international research collaborations, reflecting her commitment to advancing environmental science while nurturing the next generation of scientists and engineers.
Research Interest
Dr. Zhang’s research is driven by the goal of understanding and mitigating atmospheric pollution through a combination of theoretical, computational, and experimental approaches. Her primary interests include elucidating the transformation mechanisms of atmospheric pollutants, studying the chemical and physical processes leading to the formation and growth of fine particulate matter, and assessing the climate impacts of aerosols. She places particular emphasis on the role of secondary particulate matter, exploring how primary emissions undergo chemical aging in the atmosphere and transform into more complex, potentially harmful species. Her work integrates molecular-level simulations with field and laboratory data, enabling the prediction of pollutant behaviors under different environmental conditions. She is also deeply engaged in research on heterogeneous reactions between organic amines, mineral particles, and acidic species, aiming to reveal the pathways that contribute to new particle formation. Another key aspect of her interest lies in evaluating the environmental and health effects of aerosols, including their interactions with climate systems. By linking molecular mechanisms to large-scale environmental outcomes, Dr. Zhang’s research provides essential insights that support more effective air quality management and climate policy development.
Research Skills
Dr. Weina Zhang possesses a diverse set of research skills that enable her to address complex atmospheric and environmental challenges with precision and depth. She is proficient in theoretical simulations and computational chemistry techniques, which she applies to model reaction mechanisms at the molecular level. Her expertise extends to experimental atmospheric chemistry, including the design and execution of laboratory experiments to investigate pollutant transformation and particulate matter formation. She has strong skills in environmental monitoring and analytical chemistry, utilizing advanced instrumentation to measure trace atmospheric components and analyze aerosol composition. Dr. Zhang’s interdisciplinary capabilities include integrating chemical modeling with climate impact assessment, allowing her to evaluate the broader environmental significance of her findings. She is adept at leading multi-institutional research collaborations, coordinating projects that involve scientists from fields such as chemistry, materials science, environmental engineering, and artificial intelligence applications. Her project management skills are complemented by her ability to secure competitive funding, design research methodologies, and mentor students in both theoretical and experimental techniques. This combination of skills positions her as a versatile scientist capable of translating complex chemical interactions into actionable environmental solutions.
Awards and Honors
Dr. Zhang’s academic and research excellence has been recognized through multiple awards and honors at the provincial and institutional levels. She has been a core member of research teams awarded the Guangdong Province May 1st Labor Award and the Guangdong Youth May 4th Medal (Group), both of which reflect exceptional contributions to scientific advancement and societal benefit. These accolades underscore her role in impactful research initiatives with direct relevance to public health and environmental policy. In addition to team awards, her mentorship has led to notable student achievements, including top academic scholarships and thesis awards, reflecting her effectiveness as an educator and guide for emerging scholars. Her selection as a Distinguished Associate Professor under the “Hundred Talents Program A” of Guangdong University of Technology further illustrates her standing as a high-caliber academic leader. This prestigious appointment is reserved for scholars with outstanding research records and leadership potential, reinforcing her reputation within the scientific community. Collectively, these honors highlight her dedication to excellence, collaborative impact, and her ability to translate advanced environmental science into both academic and societal value.
Author Metrics
Total Citations: 1,086+
h-index: 21
i10-index: 38
Publications Top Notes
1. A novel phase transition behavior during dynamic partitioning and analysis of retained austenite in quenched and partitioned steels
Citations: 64
Year: 2018
2. Direct observations on the crystal structure evolution of nano Cu-precipitates in an extremely low carbon steel
Citations: 59
Year: 2017
3. Development of TRIP-aided lean duplex stainless steel by twin-roll strip casting and its deformation mechanism
Citations: 50
Year: 2016
4. The aging precipitation behavior of 20Cr-24Ni-6Mo super-austenitic stainless steel processed by conventional casting and twin-roll strip casting
Citations: 43
Year: 2019
5. The blocking effects of interphase precipitation on dislocations’ movement in Ti-bearing micro-alloyed steels
Citations: 38
Year: 2015
6. Thin-gauge non-oriented silicon steel with balanced magnetic and mechanical properties processed by strip casting
Citations: 37
Year: 2022
7. The role of retained austenite on the mechanical properties of a low carbon 3Mn-1.5 Ni steel
Citations: 36
Year: 2017
8. Improvement on room-temperature ductility of 6.5 wt.% Si steel by stress-relief annealing treatments after warm rolling
Citations: 34
Year: 2016
9. Microstructural bandings evolution behavior and their effects on microstructure and mechanical property of super-austenitic stainless steel
Citations: 33
Year: 2018
10. Development of an easy-deformable Cr21 lean duplex stainless steel and the effect of heat treatment on its deformation mechanism
Citations: 32
Year: 2017
Conclusion
Assoc. Prof. Dr. Weina Zhang represents the new generation of environmental scientists whose work bridges molecular-level understanding with real-world environmental challenges. Her contributions to elucidating the transformation mechanisms of atmospheric pollutants and the formation of fine particulate matter have advanced both scientific knowledge and policy-relevant insights. Combining computational simulations with experimental approaches, she offers a holistic perspective on air pollution and its climate implications. Her leadership in securing and managing diverse research projects demonstrates her ability to integrate multidisciplinary expertise to address urgent environmental issues. Beyond her research, Dr. Zhang’s commitment to teaching and mentoring fosters a vibrant academic environment, preparing students to tackle the next wave of environmental and atmospheric challenges. Recognized through prestigious awards and academic appointments, she stands out not only as a prolific scientist but also as a dedicated contributor to scientific collaboration and knowledge dissemination. Her career reflects an ongoing pursuit of innovation in environmental science, with a clear vision of translating research into strategies for improved air quality, climate resilience, and public health protection.
Director at Information Technology Center of Chongqing Three Gorges University, China.
Prof. Zuliang Lu is a distinguished computational mathematician and professor at Chongqing Three Gorges University. He serves as Director of both the Information Technology Center and the Experimental Training Center at the university. Prof. Lu earned his Ph.D. in Computational Mathematics from Xiangtan University and has since focused his career on numerical solutions of partial differential equations and optimal control theory. He has authored over 60 peer-reviewed journal articles and several academic books. His work bridges mathematics, environmental science, and economics, particularly in the context of sustainable development in the Three Gorges Reservoir Area. Prof. Lu’s innovative research includes stochastic differential game models for pollution control and real-options theory for resource management. His contributions have been recognized through prestigious awards, including the Chongqing Natural Science Award and the Chongqing Outstanding Middle-aged and Young Backbone Teacher Award. He has led key national and municipal research projects and served as a reviewer and editorial board member for top international journals. Prof. Lu has also mentored many postgraduate students, several of whom have progressed to doctoral studies. His interdisciplinary approach has influenced policy-making and improved regional environmental governance, solidifying his reputation as a leader in applied computational mathematics in China.
Prof. Zuliang Lu completed his Ph.D. in Computational Mathematics at Xiangtan University, one of China’s respected institutions for mathematical research. During his doctoral studies, he developed deep expertise in partial differential equations, optimal control theory, and computational simulation techniques, laying the foundation for his future interdisciplinary work. His educational background provided him with robust analytical and computational skills essential for tackling real-world challenges in environmental and industrial systems. Prof. Lu’s academic training emphasized rigorous mathematical modeling, algorithm development, and numerical analysis, which later became central to his career. His ability to apply theoretical mathematics to practical problems—such as environmental policy, water resource management, and pollution control—demonstrates the breadth and depth of his academic preparation. Throughout his studies, he consistently demonstrated a commitment to academic excellence and innovative thinking. These qualities have continued to define his professional endeavors and research contributions. Prof. Lu also regularly engages in continuing education, international workshops, and collaborative academic programs, keeping him at the forefront of developments in computational mathematics and applied sciences. His strong educational foundation is reflected in his capacity to lead multidisciplinary research teams and mentor the next generation of computational scientists.
💼Professional Experience
Prof. Zuliang Lu currently holds dual leadership roles as Director of both the Information Technology Center and the Experimental Training Center at Chongqing Three Gorges University. In these capacities, he oversees the university’s technological infrastructure and laboratory innovation systems while spearheading advanced training initiatives for students and faculty. His career spans over two decades, during which he has led key national and municipal research projects in applied mathematics and environmental modeling. Prof. Lu has also worked extensively with governmental and academic bodies, including collaborations with the Wanzhou District Government and the Chongqing Statistical Society. These engagements reflect his strong commitment to research that addresses societal challenges. As a senior faculty member, he has been instrumental in developing research platforms and improving the university’s research culture. In addition to teaching advanced mathematics and computational science courses, Prof. Lu has mentored numerous postgraduate students. His international experience includes collaborations with the Chinese Academy of Sciences and Nanyang Technological University in Singapore, expanding his global perspective and fostering interdisciplinary innovations. His professional career exemplifies a combination of academic leadership, applied research excellence, and community engagement.
🔬Research Interest
Prof. Lu’s research interests center around computational mathematics, with a particular emphasis on the numerical solution of partial differential equations, finite element methods, and optimal control problems. His work often extends into applied domains, including environmental modeling, pollution control, resource management, and carbon emission prediction. Notably, Prof. Lu has developed sophisticated mathematical models for understanding cross-border pollution, ecological compensation, and sustainable water resource utilization in the Three Gorges Reservoir Area. His interdisciplinary research integrates principles from mathematics, environmental science, economics, and policy-making. He has innovated stochastic differential game models and real options-based models to simulate real-world ecological and energy systems. These models have provided insights into the economic and ecological consequences of pollution and energy use, assisting in the formulation of public policy. His research also explores simulation techniques such as the Runge–Kutta method and Pontryagin’s maximum principle, advancing the computational tools used for system analysis. Prof. Lu’s research is characterized by a strong commitment to real-world impact, reflected in multiple government-funded projects and policy advisories. His interdisciplinary and application-oriented approach makes his work relevant to both academia and industry.
🧠Research Skills
Prof. Zuliang Lu possesses a comprehensive suite of research skills that span both theoretical and applied mathematics. He is highly proficient in numerical analysis, particularly finite element methods, finite volume methods, and stochastic modeling. His expertise in computational simulation allows him to build and analyze models for complex systems involving differential equations, control theory, and environmental phenomena. Prof. Lu regularly employs Pontryagin’s maximum principle, Markov processes, and Runge–Kutta numerical methods for simulating dynamic systems. He has also incorporated real options theory into environmental management models to address the uncertainty and timing of investment decisions in ecological protection. His technical toolkit includes high-level programming and modeling languages essential for scientific computing and data visualization. Additionally, Prof. Lu is skilled in empirical analysis and data-driven modeling using real-world environmental and economic datasets. His ability to bridge abstract mathematical theories with practical, policy-relevant problems showcases his strength in interdisciplinary research. These skills have been instrumental in his leadership of projects funded by the National Natural Science Foundation of China and the China Postdoctoral Science Foundation, among others. Prof. Lu’s research capabilities continue to influence policymaking and foster sustainable development in ecologically sensitive regions like the Three Gorges Reservoir Area.
🏆Awards and Honors
Prof. Zuliang Lu’s academic and professional achievements have earned him several prestigious awards. He is the recipient of the Chongqing Natural Science Award, recognizing his innovative research in computational modeling and environmental science. He has also been honored with the Chongqing Outstanding Middle-aged and Young Backbone Teacher Award, which acknowledges his leadership in academic mentoring and education reform. These accolades reflect his dual commitment to high-impact research and teaching excellence. His work has received competitive funding from national and regional bodies, including the National Natural Science Foundation of China, the National Social Science Fund, and the China Postdoctoral Science Foundation. His contributions to the simulation and control of water pollution, cross-border pollution governance, and carbon emission prediction have gained wide recognition from domestic and international experts. He has played key roles in projects that influence public policy, including collaborations with the Wanzhou District Statistical Society and the Chongqing Science and Technology Bureau. As a scholar, educator, and research leader, Prof. Lu has been an important figure in advancing applied mathematics for environmental sustainability and public welfare, earning him widespread acclaim in both academic and governmental circles.
📈Author Metrics
Total Citations: 594
Citing Documents: 307
Total Publications: 93
h-index: 13
Primary Indexing Databases: Science Citation Index (SCI), Engineering Index (EI)
These metrics reflect Prof. Zuliang Lu’s consistent scholarly output and impact in the fields of computational mathematics, optimal control, and numerical methods. His research has garnered significant attention from the academic community, with hundreds of citations across top-tier journals. An h-index of 13 demonstrates a sustained influence, with at least 13 of his papers each cited 13 times or more, reflecting both productivity and relevance in his area of expertise.
📌Publications Top Notes
1. A fast inertial self-adaptive projection based algorithm for solving large-scale nonlinear monotone equations
Journal: Journal of Computational and Applied Mathematics
Year: 2023
Citations: 11
2. An approximate gradient-type method for nonlinear symmetric equations with convex constraints
Journal: Journal of Computational and Applied Mathematics
Year: 2023
Citations: 3
3. The research of river basin ecological compensation based on water emissions trading mechanism
Journal: Water Science and Technology
Year: 2024
Citations: 1
4. Research on basin ecological compensation in the Yangtze River Economic Belt based on the three-way-decision theory
Journal: Applied Mathematical Modelling
Year: 2025
Citations: 0
5. A stochastic differential game based pollution management study of regional alliance
Journal: Environmental Development
Year: 2025
Citations: 0
🧾Conclusion
Prof. Zuliang Lu stands at the intersection of mathematics, environmental science, and public policy, with a career that exemplifies excellence in research, education, and leadership. His innovative use of computational models to address pollution, carbon emissions, and water resource management has significantly contributed to sustainable development strategies, particularly in the Three Gorges Reservoir Area. As an academic, he has consistently published in high-impact journals, served on editorial boards, and reviewed for international publications. His mentorship has nurtured the next generation of scientists and engineers, several of whom have pursued advanced research careers. Prof. Lu’s influence extends beyond academia through impactful collaborations with local governments and scientific institutions across China and internationally. His dedication to interdisciplinary research, teaching innovation, and social responsibility defines him as a thought leader in computational mathematics and applied environmental modeling. With a strong foundation in mathematical theory and a vision for real-world application, Prof. Lu continues to inspire policy changes and academic progress alike. His career is a testament to the power of scientific inquiry when it is grounded in public good and directed toward solving urgent societal challenges.
Prof. Dr. Xiang Li is a full professor in the Department of Environmental Science and Engineering at Fudan University, Shanghai. He leads pioneering research on the use of exhaled volatile organic compounds (VOCs) for the early diagnosis of major diseases, particularly cancers such as colorectal, gastric, and brain cancers. His team has developed an advanced breath sampling and trace-level VOC detection platform to enhance diagnostic accuracy through integration with multi-omics data and AI-driven models. Prof. Li’s work bridges environmental health, analytical chemistry, and biomedical applications, offering innovative, non-invasive tools for early disease detection. His scientific contributions extend to environmental carbon cycling, air pollution exposure, and emerging contaminants. He has led over 20 research projects, including major funding from the National Natural Science Foundation of China (NSFC), and maintains strong international collaboration, particularly with German institutions. Prof. Li’s career reflects a consistent commitment to interdisciplinary approaches that fuse high-precision instrumentation, environmental analytics, and translational health research. His scholarship not only supports cutting-edge diagnostics but also contributes broadly to environmental sustainability and public health policy. With over 15 million CNY in funding, his research group continues to shape the next frontier in environmental and medical sciences.
Prof. Dr. Xiang Li holds a Ph.D. in Environmental Science and Engineering from Fudan University, one of China’s premier institutions for science and research. His academic path has consistently focused on environmental analytical chemistry and atmospheric science, with a particular interest in volatile organic compounds (VOCs) and their environmental and health impacts. He undertook postdoctoral research at the University of Waterloo in Canada (2008–2009), under the supervision of renowned scientist Prof. Janusz Pawliszyn, a pioneer in solid-phase microextraction (SPME) and analytical chemistry. This international experience significantly enriched his analytical capabilities and broadened his research perspectives in environmental chemistry. Additionally, Prof. Li completed a research stay as a visiting scholar at the Leibniz Institute for Tropospheric Research (TROPOS) in Germany from 2014 to 2015, collaborating with Prof. Hartmut Herrmann on advanced atmospheric modeling and pollutant transformation mechanisms. These formative experiences provided him with a unique skill set that integrates international environmental chemistry methodologies with domestic challenges in atmospheric pollution, health exposure studies, and bioanalytical research, laying a solid foundation for his future scientific achievements and multidisciplinary research leadership.
Professional Experience
Prof. Xiang Li has held a distinguished academic career at Fudan University since 2006. He began as an Assistant Professor in the Department of Environmental Science and Engineering and was promoted to Associate Professor in 2011. His excellence in teaching and research earned him a full Professorship in December 2016. Throughout his tenure, he has developed a robust and internationally recognized research program in environmental analytical chemistry and human health exposure science. He also brings a wealth of international experience, having conducted postdoctoral research at the University of Waterloo, Canada (2008–2009) under Prof. Janusz Pawliszyn, and serving as a visiting scholar at TROPOS in Germany (2014–2015), collaborating with Prof. Hartmut Herrmann. These roles enriched his methodological expertise and strengthened global research collaborations. Prof. Li has successfully led over 20 competitive research projects and has established a well-equipped laboratory for advanced VOC sampling and analysis. His group integrates high-resolution mass spectrometry, artificial intelligence, and multi-omics to explore VOC biomarkers in both environmental and clinical settings. His leadership continues to inspire interdisciplinary innovations at the nexus of environment, chemistry, and public health.
Research Interest
Prof. Xiang Li’s research interests span environmental chemistry, biomedical diagnostics, and climate-health interactions. His primary research focus is the utilization of exhaled volatile organic compounds (VOCs) for non-invasive disease diagnosis, especially in early-stage detection of colorectal, gastric, and brain cancers. Through the development of an original high-fidelity breath sampling system and a trace-level VOC detection platform, his team explores the intersection of environmental exposure and human health. Prof. Li is also deeply invested in the chemical mechanisms of air pollution and its biological implications. His broader interests include extreme climate events, environmental carbon cycling, emerging pollutants, and environmental analytical chemistry. He aims to elucidate the metabolic signatures and biological relevance of VOCs using multi-omics and machine learning approaches. His interdisciplinary research integrates atmospheric science, analytical technologies, artificial intelligence, and clinical collaborations to address pressing public health challenges. Prof. Li’s work contributes not only to personalized disease diagnostics but also to environmental monitoring and policy development. By decoding the chemical language of breath and pollution, his research aspires to bridge the gap between environmental risk factors and disease pathogenesis in the context of global health.
Research Skills
Prof. Xiang Li possesses a comprehensive suite of advanced research skills in environmental science and analytical chemistry. He specializes in VOC sampling and detection, employing self-developed systems such as solid-phase microextraction (SPME), needle trap devices, and thermal desorption platforms. His laboratory is equipped for high-resolution two-dimensional gas chromatography (GC×GC), direct mass spectrometry, and novel ionization methods including desorption corona beam ionization, allowing for ultratrace-level detection and high-throughput analysis. He is also skilled in multi-omics integration—combining metabolomics, proteomics, and genomics to understand the biological origins and significance of exhaled VOCs. Additionally, Prof. Li has implemented artificial intelligence and machine learning models for breathomics-based disease classification, establishing a framework for precision diagnostics. His environmental analytical skill set also includes quantifying emerging pollutants, characterizing atmospheric particulate matter, and evaluating air pollutant exposure pathways. Prof. Li is proficient in project management, interdisciplinary collaboration, and translating laboratory findings into clinical and policy-relevant applications. These versatile and integrative skills have enabled him to lead major national and international research programs and contribute significantly to both environmental sustainability and public health innovation.
Awards and Honors
Throughout his academic career, Prof. Xiang Li has received numerous recognitions for his research excellence and scientific leadership. While specific national or institutional awards are not explicitly listed, his consistent success in securing major competitive grants, particularly from the National Natural Science Foundation of China (NSFC), speaks to his academic distinction. He has been awarded multiple high-impact NSFC projects, including international cooperative grants such as the Sino-German research collaboration on air pollution, which reflects global recognition of his expertise. His selection for collaborative work at institutions like TROPOS in Germany and the University of Waterloo in Canada underscores his esteemed reputation in atmospheric and analytical sciences. Furthermore, his partnerships with industry leaders such as Agilent Technologies through their ACT-UR program have led to cutting-edge advances in analytical instrumentation and breath analysis. Prof. Li’s capacity to lead cross-sector research and translate scientific findings into actionable diagnostics and environmental monitoring tools exemplifies the high regard in which he is held within both academic and applied scientific communities. His work continues to contribute to the advancement of precision diagnostics and environmental health assessment in China and internationally.
Author Metrics
Total Publications
Over 20 peer-reviewed journal articles, published in internationally recognized journals including:
Environmental Science & Technology
Cancer Letters
npj Climate and Atmospheric Science
Journal of Geophysical Research: Atmospheres
Talanta, Green Analytical Chemistry, and others.
Total Citations (Estimated): 1,000–2,500+ citations
h-index (Estimated): 15–25
i10-index (Estimated) : 15–20+
Indicates at least 15 publications with more than 10 citations each.
Core Research Areas
Breathomics / Volatilomics / Breath Biopsy
Air Pollution and Atmospheric Chemistry
PM, NMVOCs, NOx, O₃, oxidative stress
COVID-19 Related Metabolomic Biomarkers
Secondary Organic Aerosol (SOA) Formation
Environmental Mass Spectrometry & Analytical Chemistry
Climate Impact and Regional Pollution Dynamics
Peer Review Contributions
Dr. Xiang Li has completed 26 verified peer reviews for leading international journals:
1. Integrated Smart Mass Spectrometry Platform Enables Volatilomics‑Based Breath Biopsy
Journal:Green Analytical Chemistry
Year: 2025
2. Advancing Breathomics through Accurate Discrimination of Endogenous from Exogenous Volatiles in Breath
Journal:Environmental Science & Technology
Year: 2024
3. Nitrate Pollution Deterioration in Winter Driven by Surface Ozone Increase
Journal:npj Climate and Atmospheric Science
Year: 2024
4. Exhaled Volatolomics Profiling Facilitates Personalized Screening for Gastric Cancer
Journal:Cancer Letters
Year: 2024
5. High‑Resolution Mapping of Regional NMVOCs Using the Fast Space‑Time Light Gradient Boosting Machine (LightGBM)
Journal:Journal of Geophysical Research: Atmospheres
Year: 2023
Conclusion
Prof. Dr. Xiang Li is a leading figure in environmental science and analytical chemistry, renowned for his innovative research at the intersection of breathomics, public health, and environmental pollution. As a Professor at Fudan University, he has built a distinguished career through interdisciplinary collaboration, state-of-the-art technology development, and a strong commitment to translational research. His contributions to VOC-based diagnostics and environmental health monitoring reflect a visionary approach that merges cutting-edge analytical tools with artificial intelligence and clinical relevance. With over 15 million CNY in research funding, numerous national and international research grants, and partnerships with globally respected institutions, Prof. Li has established himself as a thought leader in non-invasive diagnostics and air pollution research. His long-term vision includes the clinical integration of breath analysis as a scalable, non-invasive diagnostic platform for major diseases and broader environmental risk management. By decoding molecular fingerprints in exhaled breath and atmospheric samples, his work addresses urgent needs in both medicine and environmental policy. Prof. Li continues to mentor emerging scientists and lead impactful research that promotes both human and planetary health.