Manickam S | Artificial Intelligence and Machine Learning | Research Excellence Award

Mr. Manickam S | Artificial Intelligence and Machine Learning | Research Excellence Award

Assistant Professor | Saveetha Engineering College | India

Mr. Manickam S is an emerging researcher in Artificial Intelligence and Machine Learning, with focused contributions spanning data analytics, secure systems, intelligent networks, and applied AI for real-world optimization. His scholarly output includes peer-reviewed journal and international conference publications addressing graph-based road network optimization, learning-assisted pathfinding, and cryptographic multi-server authentication using elliptic curve digital signatures. His research demonstrates strong integration of machine learning algorithms with networking, security, and intelligent transportation systems. Mr. Manickam S has an active innovation portfolio, with multiple Indian patents published and granted in domains such as IoT-enabled robotics, smart agriculture, edge-AI energy monitoring, cloud-integrated IoT resource allocation, solar panel automation, and AI-driven healthcare analytics. His work reflects a translational R&D orientation, emphasizing scalable, deployable intelligent systems. According to Google Scholar, he has 8 citations across 3 research documents with an h-index of 1. He has received recognition for academic innovation and contributes to the research ecosystem through conference participation, interdisciplinary AI research, and technology-driven problem solving.

Citation Metrics (Google Scholar)

10

8

6

4

2

0

Citations
8

Documents
3

h-index
1

Citations

Documents

h-index

View Scopus Profile   View ORCID Profile   View Google Scholar   View ResearchGate

Featured Publications

Secure multi server authentication system using elliptic curve digital signature
– IEEE ICCPCT Conference Proceedings, 2016 | Citations: 8

Optimizing Road Networks: A Graph-Based Analysis with Path-finding and Learning Algorithms
– International Journal of Intelligent Transportation Systems Research, 2024

Yufeng Gu | Evolutionary Biology and Genetics | Research Excellence Award

Assist. Prof. Dr. Yufeng Gu | Evolutionary Biology and Genetics | Research Excellence Award

Assistant Researcher | The Orchid Conservation & Research Center of Shenzhen | China

Assist. Prof. Dr. Yufeng Gu is an emerging researcher in evolutionary genomics with a rapidly growing scholarly footprint, reflected in 202 Scopus citations, 25 publications, and an h-index of 7. His research focuses on plant evolutionary biology, plastid genome architecture, phylogenetic systematics, and adaptive evolution in medicinally and ecologically significant taxa. Assist. Prof. Dr. Yufeng Gu has produced high-impact journal articles, including advanced comparative plastome studies that elucidate genomic structure, codon usage bias, positive selection patterns, and divergence timelines in key fern lineages such as Drynaria. His work integrates molecular evolution, genome sequencing, and bioinformatic analysis to uncover evolutionary mechanisms shaping biodiversity. He has contributed to multi-institutional research projects, advanced chloroplast genomics, and generated insights into hypervariable regions, repeat elements, and structural rearrangements driving plant diversification. His contributions support taxonomy, conservation genomics, and evolutionary inference, complemented by active scholarly engagement through peer review, collaborative R&D activities, and recognition within the plant genomics research community.

Citation Metrics (Scopus)

250

200

150

100

50

0

Citations
202
Documents
25
h-index
7

Citations

Documents

h-index

View Scopus Profile  View ORCID Profile
  View Sci Profiles Profile

Featured Publications

Xilian Xu | Nanotechnology and Materials Science | Research Excellence Award

Dr. Xilian Xu | Nanotechnology and Materials Science | Research Excellence Award

Lecturer | Zhejiang University of Science and Technology | China

Dr. Xilian Xu is an accomplished researcher with a strong scholarly impact, evidenced by 2,289 Scopus citations, 38 peer-reviewed publications, and an h-index of 25. His research portfolio centers on high-quality journal articles, conference contributions, and scholarly outputs that advance fundamental and applied science. Dr. Xilian Xu’s work demonstrates consistent contributions to innovative research themes, addressing complex scientific questions through rigorous experimental design and analytical methodologies. He has actively contributed to competitive research projects and funded programs, supporting translational and interdisciplinary research outcomes. His scholarly activities include research findings with measurable academic and societal impact, reflected in citation performance and journal visibility. Dr. Xilian Xu has also contributed to innovation-driven R&D activities, strengthening knowledge transfer and applied research potential. In addition, he has provided professional service as a peer reviewer and editorial contributor, supporting research quality and integrity within the scientific community. His research achievements and recognitions underscore sustained excellence and influence in his field.

Research Metrics (Scopus)

2500

2000

1500

1000

500

0

Citations
2,289

Documents
38

h-index
25

Citations

Documents

h-index

View Scopus Profile

Featured Publications

Asif Muzaffar | Artificial Intelligence and Machine Learning | Research Excellence Award

Dr. Asif Muzaffar | Artificial Intelligence and Machine Learning | Research Excellence Award

Teaching Fellow | Birmingham City University | United Kingdom

Dr. Asif Muzaffar is a recognized researcher in Operations and Supply Chain Management, known for advancing quantitative modelling, sustainable operations, and digital supply chain innovation. With 816 citations, 45 documents, an h-index of 16, and an i10-index of 17, his scholarly influence is reflected through publications in leading journals, including Sustainable Production and Consumption, Sustainable Development, Operations Management Research, Technological Forecasting & Social Change, International Journal of Disaster Risk Reduction, and the Journal of Services Marketing. His research portfolio encompasses 21 peer-reviewed journal papers, multiple conference contributions, and ongoing works addressing dynamic pricing, newsvendor models, sustainable procurement, and consumer behavior in digital environments. Dr. Asif Muzaffar’s contributions span supply chain contracts, institutional pressures, triple bottom line sustainability, rebate mechanisms, and technology-enabled service innovations such as AR/VR. His work often integrates simulation modelling, optimization, and game-theoretic frameworks to generate actionable insights for resilient, low-carbon, and digitally enabled supply chain systems. He has disseminated his findings at major international conferences, contributing evidence-based perspectives on biased decision-making, rebate coordination, and supply chain optimization. His research leadership extends to mentoring graduate research, shaping sustainable supply chain methodologies, and contributing as a reviewer for high-impact journals including Technological Forecasting & Social Change and Sustainable Development. Through these scholarly contributions, Dr. Asif Muzaffar has established himself as an influential voice in contemporary sustainable operations and supply chain research.

Citation Metrics (Google Scholar)

1000

800

600

400

200

0

Citations
816

Documents
45

h-index
16

h-index
17

Citations

Documents

h-index

i10-index

View Scopus Profile   View ORCID Profile   View Google Scholar   View ResearchGate

Featured Publications

Peijia Bai | Nanotechnology and Materials Science | Best Researcher Award

Dr. Peijia Bai | Nanotechnology and Materials Science | Best Researcher Award

Assistant Research Fellow | Beihang University | China

Dr. Peijia Bai is an emerging materials scientist whose research significantly advances high-efficiency thermal management, electrothermal conversion, and radiative cooling technologies. His work centers on electrocaloric materials and devices, ultrafast-response phase-change materials (PCMs), thermal system design, and protective color radiative-cooling coatings. With a strong focus on bridging fundamental materials science with practical applications, he has contributed to establishing next-generation energy-efficient cooling strategies and improving heat-dissipation performance for electronic and aerospace systems. Dr. Peijia Bai has published more than 30 peer-reviewed journal articles across leading platforms including Advanced Materials, Nature Communications, Science, and Joule, with over 812 Scopus citations, 24 documents and an h-index of 14. His publications include more than 10 papers as first or corresponding author, highlighting his prominent role in driving independent innovations. He has also contributed to one research monograph and authored multiple high-impact conference papers that extend his work to global scientific communities. A major contribution of his research is the development of a standardized electrothermal-effect measurement protocol, which has been widely adopted by both academia and industry. This standardized method has been cited extensively in top-tier journals and is now considered an important benchmark for evaluating electrothermal device performance. His work has also yielded seven patented technologies covering thermal-functional materials and device architectures, demonstrating strong translational potential. Dr. Peijia Bai has led and contributed to multiple funded research projects related to thermal management materials, advanced cooling devices, and energy-conversion technologies. His innovations have earned him the prestigious SAMPE International Award and recognition within professional societies such as the Zhejiang Society for Materials Progress. He also serves on the young editorial boards of cScience and Renewable and Sustainable Energy, reflecting his growing influence in the field. Dr. Peijia Bai’s research continues to advance innovative thermal strategies, contributing impactful solutions for sustainable energy technologies, aerospace materials, and advanced electronic systems.

Profiles: Scopus | ORCID | ResearchGate

Featured Publications

1. Bai, P., Yang, Q., & Yu, S. (2025). Electrocaloric refrigeration utilizing lead-free multilayer ceramics with high heat transfer efficiency. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2025.128927

2. Bai, P., Yang, Q., & Yu, S. (2025). Integration of efficient photothermal and flexible solid-solid PCM for personal thermoregulation in cold environments. iScience. https://doi.org/10.1016/j.isci.2025.114032

3. Wang, G., Bai, P., Yuan, S., Bo, Y., Zhang, D., & Ma, R. (2025). Flexible electrocaloric polymer stack driven by one AA battery for highly efficient personalized thermoregulation. Nano Letters, 25. https://doi.org/10.1021/acs.nanolett.5c03730

4. Wang, G., Bai, P., Yuan, S., Bo, Y., Zhou, Z., Zhang, D., & Ma, R. (2025). Highly efficient cooling via synergistic electro‐thermal phase changes. Advanced Materials. https://doi.org/10.1002/adma.202506006

5. Ma, W., Liu, X., Yang, T., Wang, J., Qiu, Z., Cai, Z., Bai, P., Ji, X., & Huang, Y. (2025). Strong magnetic–dielectric synergistic gradient metamaterials for boosting superior multispectral ultra‐broadband absorption with low‐frequency compatibility. Advanced Functional Materials. https://doi.org/10.1002/adfm.202314046

Rifeng Wu | Environmental Pollution and Remediation | Best Paper Award

Dr. Rifeng Wu | Environmental Pollution and Remediation | Best Paper Award

Lecturer | Guangxi Normal University | China

Dr. Rifeng Wu is an emerging environmental scientist whose research focuses on microbial reductive dehalogenation, organohalide bioremediation, and the integration of microbial systems with material-based catalytic processes. His work targets the remediation of soils and groundwater contaminated with halogenated organic pollutants, advancing both mechanistic understanding and applied technologies for environmental cleanup. His research productivity includes 8 Scopus-indexed publications, 358 citations, and an h-index of 7, reflecting growing international recognition. A central component of Dr. Rifeng Wu’s research involves enhancing the ecological fitness, colonization behavior, and synergistic interactions of organohalide-respiring bacteria. His publication in Environmental Science & Technology demonstrates innovative strategies for improving microbial interactions to accelerate chloroethene bioremediation. He has also developed integrated systems combining microbial reductive dehalogenation with advanced oxidation processes such as persulfate activation, resulting in complete organohalide attenuation and improved remediation efficiency, as reported in Frontiers of Environmental Science & Engineering. Dr. Rifeng Wu has contributed impactful findings to high-impact journals including Journal of Hazardous Materials, where he introduced bio-RD-PAOP materials for polychlorinated biphenyl degradation, combining engineered materials with microbiological pathways to achieve enhanced dechlorination performance. His research also extends to nanomaterial synthesis for catalytic applications, demonstrated through multiple publications in Applied Catalysis B: Environmental, ACS Sustainable Chemistry & Engineering, and Chinese Journal of Catalysis, where he has designed advanced Pt-Pd-based nanostructures with superior electrocatalytic behavior for oxygen reduction reactions. He has participated in several national and provincial research projects, contributing to methodological advancements in contaminant degradation, microbial ecology, and sustainable remediation technologies. His recent work also includes studying microplastic-induced physiological changes in plants, broadening his contributions to emerging environmental pollution challenges. Dr. Rifeng Wu’s research achievements span journal publications, funded projects, innovative remediation systems, and interdisciplinary material–microbe technologies, positioning him as a notable young scholar in environmental biotechnology and pollution control.

Profiles: Scopus | ResearchGate

Featured Publications

1. Wu, R., Shen, R., Liang, Z., Zheng, S., Yang, Y., Lu, Q., Adrian, L., & Wang, S. (2023). Improve niche colonization and microbial interactions for organohalide-respiring-bacteria-mediated remediation of chloroethene-contaminated sites. Environmental Science & Technology, 57(45). https://doi.org/10.1021/acs.est.3c05932

2. Wu, R., Zhang, S., & Wang, S. (2022). Development and microbial characterization of Bio-RD-PAOP for effective remediation of polychlorinated biphenyls. Journal of Hazardous Materials, 436, 129190. https://doi.org/10.1016/j.jhazmat.2022.129190

3. Wu, R., & Wang, S. (2021). Integration of microbial reductive dehalogenation with persulfate activation and oxidation (Bio-RD-PAO) for complete attenuation of organohalides. Frontiers of Environmental Science & Engineering, 16(2), 22. https://doi.org/10.1007/s11783-021-1457-8

4. Li, Y., Wu, R., Liu, Y., Wen, Y., & Shen, P. K. (2021). High-quality and deeply excavated PtPdNi nanocubes as efficient catalysts toward oxygen reduction reaction. Chinese Journal of Catalysis, 42(5), 772–780. https://doi.org/10.1016/S1872-2067(20)63703-2

5. Wang, S., Wu, R., Zhang, S., & Helmholtz Centre for Environmental Research. (2022). Development and microbial characterization of Bio-Rd-Pao for extensive attenuation of persistent organohalides. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4039585

Xiaoquan Huang | Health and Medicine Advances | Research Excellence Award

Dr. Xiaoquan Huang | Health and Medicine Advances | Research Excellence Award

Associate Researcher | Zhongshan Hospital, Fudan University | China

Dr. Xiaoquan Huang is an accomplished clinical researcher whose work centers on gastroenterology, hepatology, metabolic liver disease, portal hypertension, gastrointestinal bleeding, and global disease epidemiology. With 848 Scopus citations, 79 publications, and an h-index of 13, his research demonstrates sustained impact across Health Sciences, Pharmacology & Toxicology, Cardiology, Endocrinology, Geriatrics, Neurology, Psychiatry, Pulmonary Medicine, Radiology, and related clinical domains. His research portfolio features high-quality journal publications in Chinese Medical Journal, Journal of Gastroenterology and Hepatology, Thrombosis and Haemostasis, Endoscopy, Liver International, Therapeutic Advances in Chronic Disease, and Journal of Translational Medicine. His works span clinical investigations, systematic reviews, global burden analyses, and translational studies addressing cirrhosis-related complications, portal vein thrombosis, metabolic-associated fatty liver disease, and early-onset colorectal cancer. Dr. Xiaoquan Huang has also served as a corresponding author on several influential global epidemiology studies focused on colorectal cancer and fatty liver disease burden.  Dr. Xiaoquan Huang’s scholarly contributions include research on variceal bleeding management, endoscopic innovations, thrombosis prediction markers, myeloproliferative neoplasm-associated portal hypertension, and gastrointestinal microbiome trends. His findings have advanced evidence-based approaches for cirrhotic complications, individualized treatment strategies, endoscopic therapy optimization, and risk stratification in liver disease. He has contributed to meta-analyses and systematic reviews, including work on transoral incisionless fundoplication (TIF) for GERD and therapeutic evaluations in portal hypertension, expanding global clinical understanding and practice guidelines. His research awards include multiple Young Investigator accolades from APDW, EASL, and JGHF, reflecting international recognition for innovation and research excellence. Dr. Xiaoquan Huang’s academic leadership includes reviewer service, conference presentations, and contributions to collaborative global research projects. His ongoing work continues to shape diagnostic, therapeutic, and epidemiological frameworks in hepatology and gastroenterology, establishing him as a significant contributor to clinical research and patient-centered innovations.

Profiles: Scopus | ORCID | ResearchGate | Sci Profiles

Featured Publications

1. Huang, X., Zou, D., Wang, H., Chen, W., Zhang, L., Li, F., Ma, L., Zhang, C., Chen, Y., & Chen, S. (2024). Gastric variceal obstruction improves the efficacy of endoscopic management of esophageal variceal bleeding in GOV type I. Endoscopy International Open, 12(8), E940–E946.

2. Wang, Y., Huang, X. (Corresponding author), Cheryala, M., Aloysius, M., Zheng, B., Yang, K., Chen, B., Fang, Q., Chowdary, S. B., Abougergi, M. S., & Chen, S. (2023). Global increase of colorectal cancer in young adults over the last 30 years: An analysis of the Global Burden of Disease Study 2019. Journal of Gastroenterology and Hepatology, 38(9), 1552–1558.

3. Jiang, S., Ai, Y., Fan, X., Huang, X. (Corresponding author), Wu, L., Ni, L., Li, F., & Chen, S. (2023). Increased factor VIII activity is predictive of the occurrence of portal vein thrombosis in cirrhosis. Thrombosis and Haemostasis, 123(7), 714–722.

4. Huang, X., Zhang, M., Ai, Y., Jiang, S., Xiao, M., Wang, L., Jian, Y., Zhuge, Y., Zhang, C., & Chen, S. (2022). Characteristics of myeloproliferative neoplasm-associated portal hypertension and endoscopic management of variceal bleeding. Therapeutic Advances in Chronic Disease, 13, Article 20406223221125691.

5. Huang, X., Abougergi, M. S., Sun, C., Murphy, D., Sondhi, V., Chen, B., Zheng, X., Chen, S., & Wang, Y. (2023). Incidence and outcomes of thromboembolic and bleeding events in patients with liver cirrhosis in the USA. Liver International, 43(2), 434–441.

Nelson Etafo | Nanotechnology and Materials Science | Best Scholar Award

Dr. Nelson Etafo | Nanotechnology and Materials Science | Best Scholar Award

Researcher | Universidad Carolina | Mexico

Dr. Nelson Etafo is an active materials science and environmental technology researcher whose work spans photoluminescence, nanotechnology, catalysis, wastewater remediation, and sustainable materials engineering. With 238 Scopus citations, 24 indexed publications, and an h-index of 7, he has contributed significantly to the advancement of functional materials, luminescent phosphors, and electrocoagulation-based technologies. His research focuses strongly on lanthanide-doped phosphors, solid-state lighting, upconversion materials, and their applications in bioimaging, sensing, anti-counterfeiting, and light-emitting devices. He has developed and analyzed BaLaAlO₄, SrLaAlO₄, and Sr₂CeO₄-based phosphors, contributing new insights into blue, red, and NIR emissions, refractive-index-influenced catalysis, and photoluminescent mechanisms. His work includes advancements in combustion synthesis, upconversion efficiency improvement, and material optimization for LEDs and biomedical uses. Dr. Nelson Etafo is also recognized for extensive contributions to environmental remediation, particularly electrocoagulation technology for wastewater treatment, pollutant removal, and precious metal recovery. His collaborative studies address cyanide destruction, gold/silver recovery, contaminant sequestration, and emerging wastewater challenges. He has authored influential reviews on photocatalysis, touchscreen antimicrobial coatings, nanohybrids for biomedical use, and CO₂ utilization technologies-strengthening global discussions on sustainable and green engineering. Beyond journal publications, Dr. Nelson Etafo has contributed to book authorship and edited volumes, including Tailored Light Emitters for Biomedical Applications (Springer), along with chapters on drug delivery, biocatalytic waste conversion, and advanced materials for water treatment. His scientific contributions extend to participation in national and international conferences, collaborative projects with multidisciplinary teams, and membership in leading professional bodies such as ACS, RSC, and CSN. His research impact reflects a strong commitment to innovation, sustainability, and scientific advancement across material science and environmental engineering.

Profiles: Scopus | ORCID | Google Scholar | ResearchGate | Sci Profiles | Loop

Featured Publications

1. Etafo, N. O., Bamidele, M. O., Bamisaye, A., & Alli, Y. A. (2024). Revolutionizing photocatalysis: Unveiling efficient alternatives to titanium (IV) oxide and zinc oxide for comprehensive environmental remediation. Journal of Water Process Engineering, 62, 105369.

2. Nkoh, J. N., Oderinde, O., Etafo, N. O., Kifle, G. A., Okeke, E. S., Ejeromedoghene, O., … Ogunlaja, O. O. (2023). Recent perspective of antibiotics remediation: A review of the principles, mechanisms, and chemistry controlling remediation from aqueous media. Science of the Total Environment, 881, 163469.

3. Nkoh, J. N., Shang, C., Okeke, E. S., Ejeromedoghene, O., Oderinde, O., Etafo, N. O., … Foka Meugang, E. (2024). Antibiotics soil-solution chemistry: A review of environmental behavior and uptake and transformation by plants. Journal of Environmental Management, 354, 120312.

4. Alli, Y. A., Bamisaye, A., Bamidele, M. O., Etafo, N. O., Chkirida, S., Lawal, A., … Nageim, H. A. (2024). Transforming waste to wealth: Harnessing carbon dioxide for sustainable solutions. Results in Surfaces and Interfaces, 17, 100321.

5. Etafo, N. O., Oliva, J., Garcia, C. R., Mtz-Enríquez, A. I., Ruiz, J. I., Avalos Belmonte, F., … Gómez-Solís, C. (2022). Enhancing the blue/NIR emission of novel BaLaAlO4:Yb3+ (x mol%), Tm3+ (0.5 mol%) upconversion phosphors with the Yb3+ concentration (x = 0.5 to 6). Inorganic Chemistry Communications, 137, 109192.

Xiaomei Lyu | Genetic Engineering and Biotechnology | Best Researcher Award

Prof. Xiaomei Lyu | Genetic Engineering and Biotechnology | Best Researcher Award

Professor | Jiangnan University | China

Prof. Xiaomei Lyu is a leading researcher in synthetic biology-driven food science, microbial engineering, and biotechnology. Her work focuses on designing programmable microbial systems, metabolic pathway engineering, and CRISPR-based genetic regulation for applications in food functionality, metabolic health, and biomanufacturing. Her research contributions span high-impact areas such as microbial biosensing, host–microbe interaction engineering, and sustainable biosynthesis of value-added compounds. Prof. Xiaomei Lyu has contributed significantly to the development of engineered microbial genetic circuits targeting biomedical and functional-food applications. Her notable advancements include CRISPR-regulated biosensing systems and controllable nanocarriers enabling active delivery of gene-editing components (Small, 2021). She has also pioneered strategies for modularizing and optimizing metabolic pathways in microbial chassis to enhance production efficiency of nutraceutical compounds, as demonstrated in her work on delta-tocotrienol biosynthesis (Journal of Agricultural and Food Chemistry, 2023). Her research on Rhizobium-derived beta-glucan has opened new avenues in microbiota-modulated metabolic regulation. These works revealed mechanisms by which microbial polysaccharides influence triglyceride metabolism, intestinal fat absorption, and gut–host crosstalk, producing valuable implications for obesity and metabolic disorder interventions (Food & Function, 2022; 2024). Additionally, Prof. Xiaomei Lyu has made recognized contributions to enzymatic and chemo-catalytic processes relevant to food biotechnology, including lactulose production and salidroside biosynthesis, helping advance industrial and functional food innovation. Her publication record includes influential papers in Nature Communications, Small, Food & Function, Biotechnology Advances, Phytochemical Reviews, and Journal of Agricultural and Food Chemistry, supported by strong citation performance (Scopus: 1,515 citations, 59 documents, h-index 22). Her scholarly impact extends to R&D in microbial engineering, biochemical pathways, food-derived therapeutics, and microbiome-based metabolic interventions. Prof. Xiaomei Lyu’s research achievements establish her as a prominent contributor to next-generation microbial biotechnology, functional food science, and precision metabolic modulation.

Profiles: Scopus | ResearchGate | Sci Profiles

Featured Publications

1. Gu, B., Zhang, W.-D., Feng, J.-D., Zhao, W., Gu, Z.-G., & Lyu, X. (2025). Upcycling CO₂ into single cell protein via an integrated electrocatalytic–biosynthetic system. ACS Sustainable Chemistry & Engineering. https://doi.org/10.1021/acssuschemeng.5c06506

2. Wang, L., Zeng, Q., Gu, J., Wang, M., Yang, R., & Lyu, X. (2025). High conversion of value-added lactulose from lactose-rich dairy waste by in vivo cascade cell factory. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.5c03933

3. Zeng, Q., & Lyu, X. (2025). Identification of a novel cellobiose 2-epimerase from Acidobacteriota bacterium and its application for in-situ milk catalysis. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2025.1575725

4. Liu, H., Zeng, Q., Zhu, C., Xu, C., Yang, R., & Lyu, X. (2025). High-throughput screening and directed evolution of β-1,3-N-acetylglucosaminyltransferase for enhanced LNnT production in engineered Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.5c01311

5. Liu, H., Liu, Y., Hu, H., Zhang, S., Lyu, X., & Yang, R. (2024). De novo production of LNnT by metabolic engineering of Saccharomyces cerevisiae as cell factory. Food Science and Human Wellness. https://doi.org/10.26599/fshw.2024.9250342

Krystyna Pyrzynska | Environmental Pollution and Remediation | Best Researcher Award

Prof. Krystyna Pyrzynska | Environmental Pollution and Remediation | Best Researcher Award

Faculty of Chemistry | University of Warsaw | Poland

Prof. Krystyna Pyrzynska is a leading analytical chemist whose research has significantly advanced chromatographic science, environmental analytics, and the development of modern sorbent-based separation technologies. With 10,597 citations, 203 publications, and an h-index of 52, she is widely recognized for her influential contributions to metal ion speciation, phytochemical analysis, and sorbent innovation. Her work integrates fundamental analytical chemistry with applied environmental and food science, generating high-impact findings across multidisciplinary domains. Her research focuses on solid sorbents for metal preconcentration, including carbon nanostructures, porphyrin-based materials, nanomaterials for chromium remediation, and plant-extract-derived nanoparticles. She has extensively investigated metal speciation, especially in complex environmental matrices, contributing key methodologies for improved sensitivity, selectivity, and environmental monitoring reliability. Her publications in Molecules, Materials, Analytica Chimica Acta, Microchimica Acta, and Food Chemistry reflect sustained impact in top-tier journals. A prominent area of her work includes chromatographic analysis of phenolic compounds, polyphenols, and antioxidants, with substantial contributions to the extraction, quantification, and functional evaluation of phytochemicals in food and agricultural by-products. Recent studies on selenium-enriched tea, chlorogenic acids from coffee wastes, and ferulic acid extraction highlight her leadership in nutraceutical analytics and sustainable bioresource utilization. Her impactful reviews and research articles on selenium species, radioisotopes for theranostics, and environmental remediation demonstrate breadth in both environmental and biomedical analytical chemistry. She has produced influential works on photocatalytic degradation of pharmaceuticals, green synthesis of selenium nanoparticles, and advanced sorbent technologies, many of which have become highly cited references in the field. Prof. Krystyna Pyrzynska’s research portfolio also reflects strong collaborative practice, with over 56 co-authors, notable interdisciplinary partnerships, and contributions to international and domestic scientific networks. She frequently publishes open-access work, enhancing global accessibility to analytical chemistry advancements. Overall, Prof. Krystyna Pyrzynska stands as a leading figure in analytical and environmental chemistry, known for her innovations in separation techniques, sustainable extraction, metal ion analytics, and value-added utilization of natural bioresources.

Profiles: Scopus | ORCID | ResearchGate | Sci Profiles | Research.com | Academia | Scilit

Featured Publications

1. Pyrzyńska, K. (2020). Nanomaterials in speciation analysis of metals and metalloids. Talanta, 120784. https://doi.org/10.1016/j.talanta.2020.120784

2. Sentkowska, A., & Pyrzyńska, K. (2020). Selenium in plant foods: Speciation analysis, bioavailability, and factors affecting composition. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2020.1758027

3. Piwowarczyk, S., Sentkowska, A., & Pyrzyńska, K. (2020). Simultaneous determination of vitamin B6 and catechins in dietary supplements by ZIC-HILIC chromatography and their antioxidant interactions. European Food Research and Technology. https://doi.org/10.1007/s00217-020-03516-w

4. Sentkowska, A., & Pyrzyńska, K. (2019). Evaluation of the antioxidant interactions between green tea polyphenols and nonsteroidal anti-inflammatory drugs. Open Chemistry Journal, 6, 47–52. https://doi.org/10.2174/1874842201906010047

5. Dróżdż, P., & Pyrzyńska, K. (2019). Extracts from pine and oak barks: Phenolics, minerals and antioxidant potential. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2019.1668381