Lili Wang | Environmental Conservation | Best Researcher Award

Assoc. Prof. Dr. Lili Wang | Environmental Conservation | Best Researcher Award

Associate Professor | Zhejiang Sci-tech University | China

Assoc. Prof. Dr. Lili Wang is a highly accomplished scholar and researcher specializing in textile chemistry, dyeing, and finishing engineering. Serving as an Associate Professor at Zhejiang Sci-Tech University, she has established herself as a leading figure in the development of sustainable textile technologies. Her primary research focuses on ecological dyeing methods and the functionalization of natural polymers, with an emphasis on reducing environmental impact while enhancing textile performance. Assoc. Prof. Dr. Lili Wang has successfully led and contributed to multiple nationally and provincially funded research projects, particularly in the field of digital spray dyeing technology for polyester fabrics, which is recognized for its potential in energy conservation and carbon reduction. She has further demonstrated her innovative capacity by securing numerous invention patents, reflecting her ability to translate scientific research into practical applications. Her academic training, combined with postdoctoral experience in industry, enables her to integrate theoretical research with real-world textile solutions. Beyond her technical expertise, Assoc. Prof. Dr. Lili Wang is dedicated to advancing the global textile industry toward greener, more efficient practices. Her contributions highlight the importance of bridging academia and industry, making her an influential voice in shaping the future of sustainable textile science and engineering.

Publication Profile

Scopus

Orcid

Google Scholar

Education

Assoc. Prof. Dr. Lili Wang has built a strong academic foundation through a comprehensive educational journey across some of China’s leading institutions in textiles, chemistry, and materials science. She began her studies in materials science and engineering at the undergraduate level, where she gained fundamental knowledge in textile materials, fiber science, and engineering principles. This early academic training sparked her interest in exploring the chemistry of textiles and their applications in innovative and sustainable processes. Motivated to advance her expertise, she pursued graduate studies in chemistry, chemical engineering and biotechnology, where she deepened her understanding of advanced chemical reactions, polymer science, and their relevance to textile dyeing and finishing. Her doctoral training focused on the intersection of chemistry and textile applications, equipping her with the ability to conduct independent research and develop novel approaches to textile processing. To further strengthen her research profile, Assoc. Prof. Dr. Lili Wang undertook postdoctoral research in collaboration with industry, where she explored practical solutions for ecological dyeing and finishing technologies. This unique combination of academic rigor and industrial research experience has provided her with both theoretical depth and applied skills, enabling her to contribute meaningfully to advancing sustainable textile science and engineering.

Professional Experience

Assoc. Prof. Dr. Lili Wang has cultivated a career that bridges academic research, industrial application, and innovation in textile chemistry and ecological dyeing. At Zhejiang Sci-Tech University, she serves as an Associate Professor in the College of Textiles Science and Engineering, where she is actively engaged in teaching, research, and student mentorship. Her academic role involves guiding research in textile chemistry and dyeing, supervising projects focused on sustainable textile technologies, and fostering interdisciplinary collaboration. In addition to her university work, she has gained valuable industrial experience through postdoctoral research at Saintyear Holding Group Co., Ltd., where she applied her scientific expertise to real-world challenges in ecological dyeing and finishing. This dual experience has allowed her to integrate theoretical knowledge with practical solutions, ensuring that her research directly contributes to industrial innovation. Assoc. Prof. Dr. Lili Wang has successfully led and participated in major research projects funded by national and provincial foundations, focusing on energy-saving and eco-friendly textile processes. Her achievements include an impressive record of granted invention patents, reflecting her ability to transform scientific ideas into applied technologies. Through her professional journey, she has consistently demonstrated leadership, innovation, and a strong commitment to advancing sustainable practices in the textile industry.

Research Interest

Assoc. Prof. Dr. Lili Wang’s research interests are centered on advancing sustainable technologies in textile chemistry, dyeing, and finishing. She is particularly focused on developing new ecological dyeing methods that reduce water consumption, minimize energy use, and lower the carbon footprint of textile processing. One of her major areas of interest lies in digital spray dyeing for polyester fabrics, a cutting-edge approach recognized for its efficiency and environmental benefits. In addition, she explores the functionalization of natural polymers, aiming to create textiles with enhanced properties such as durability, antibacterial performance, and eco-compatibility. By integrating renewable resources with modern textile finishing techniques, her work contributes to the development of high-value and sustainable textile products. Assoc. Prof. Dr. Lili Wang also investigates interdisciplinary applications of polymer science, chemical engineering, and environmental chemistry to address industry challenges. Her research reflects a balance between innovation and responsibility, ensuring that technological advancements align with global sustainability goals. Through her projects, she seeks to create practical solutions that can be widely applied in the textile industry, ultimately promoting greener production models and contributing to the transformation of the global textile sector toward more sustainable and environmentally friendly practices.

Research Skills

Assoc. Prof. Dr. Lili Wang has developed a comprehensive set of research skills that combine advanced chemical knowledge, materials engineering expertise, and applied textile innovation. She is highly skilled in the design and optimization of textile dyeing processes with a focus on energy efficiency, water conservation, and environmental protection. Her technical expertise includes digital spray dyeing, ecological finishing methods, and the modification of polymers to enhance textile functionality. She is proficient in applying advanced analytical methods to evaluate dyeing performance, textile durability, and eco-friendly properties of treated fabrics. Assoc. Prof. Dr. Lili Wang also has strong project management skills, having successfully led and coordinated multiple national and provincial research projects funded by prestigious scientific foundations. Her ability to translate laboratory results into scalable industrial applications is evident in her portfolio of granted patents. In addition, she demonstrates expertise in interdisciplinary collaboration, bringing together principles of chemistry, chemical engineering, and textile science to create innovative solutions. Her research skills extend to experimental design, data analysis, and innovation development, ensuring that her work not only advances theoretical knowledge but also contributes practical technologies for the textile industry. This unique combination positions her as a versatile and impactful researcher in sustainable textile science.

Awards and Honors

Assoc. Prof. Dr. Lili Wang has received recognition for her outstanding contributions to the advancement of sustainable textile technologies. Her research achievements have been supported by major national and provincial funding bodies, reflecting the scientific significance and societal value of her work. She has secured competitive grants from the National Natural Science Foundation of China, the China Postdoctoral Science Foundation, and the Zhejiang Provincial Natural Science Foundation, demonstrating her strong research leadership and innovation capacity. Beyond funding recognition, her creativity and applied research outcomes are further highlighted by her impressive record of granted invention patents. These patents stand as a testament to her ability to translate theoretical knowledge into impactful technologies that address industrial needs. Her recognition is not limited to academic circles but extends to industrial collaborations, where her research outcomes contribute directly to advancing ecological dyeing and functional finishing practices. Assoc. Prof. Dr. Lili Wang’s honors reflect her commitment to developing environmentally responsible textile processes and her vision of promoting green innovation within the industry. These achievements underscore her role as a respected researcher, innovator, and academic leader, dedicated to shaping the future of textile engineering with sustainability and scientific excellence at the forefront.

Author Metrics

  • Total Documents Published: 60+

  • Total Citations: 2,740+

  • h-index: 30

  • i10-index: 60

These metrics reflect the significant academic impact and influence of Assoc. Prof. Dr. Lili Wang’s research in textile chemistry, ecological dyeing technologies, and polymer functionalization. Her work is widely cited in international journals, demonstrating both the quality and relevance of her scientific contributions to the global research community.

Publications Top Notes

1. Urea-free reactive printing of viscose fabric with high color performance for cleaner production
Year: 2021
Citations: 15

2. A novel quaternary ammonium triethanolamine modified polyester polyether for rapid wetting and penetration pretreatment for digital inkjet dyeing of polyester fabric
Year: 2025
Citations: 6

3. Organofluorosilicon modified polyacrylate with the unidirectional migration promotion of disperse dyes toward polyester fabric for wash-Free digital inkjet dyeing
Year: 2024
Citations: 6

4. Ecofriendly and durable flame-retardant cotton fabric based on alkyl/N/B/P modified meglumine with high efficiency
Year: 2023
Citations: 12

5. Ecofriendly dual-function cotton fabric with antibacterial and anti-adhesion properties based on modified natural materials
Year: 2024
Citations: 3

Conclusion

Assoc. Prof. Dr. Lili Wang has established herself as a dynamic academic and researcher whose career reflects the integration of scientific excellence, practical innovation, and environmental responsibility. With her strong foundation in chemistry, biotechnology, and materials science, she has advanced into a leading role in textile chemistry and sustainable dyeing technologies. Her focus on ecological dyeing and functionalization of natural polymers demonstrates her commitment to addressing pressing global challenges in textile production, such as energy consumption, water conservation, and pollution reduction. Through her leadership in nationally and provincially funded projects, she has contributed innovative solutions that align academic research with industrial applications, reinforcing the importance of sustainability in modern textiles. Her impressive portfolio of invention patents further illustrates her ability to translate research outcomes into practical technologies that benefit both the industry and society. Beyond technical contributions, Assoc. Prof. Dr. Lili Wang plays a vital role as an educator and mentor, inspiring the next generation of researchers in textile science. Her career path exemplifies how academic rigor, interdisciplinary collaboration, and a vision for sustainability can converge to shape the future of textile engineering. With her expertise and dedication, Assoc. Prof. Dr. Lili Wang continues to make meaningful contributions toward building a greener and more innovative textile industry.

 

Zuliang Lu | Environmental | Best Researcher Award

Prof. Zuliang Lu | Environmental | Best Researcher Award

Director at Information Technology Center of Chongqing Three Gorges University, China.

Prof. Zuliang Lu is a distinguished computational mathematician and professor at Chongqing Three Gorges University. He serves as Director of both the Information Technology Center and the Experimental Training Center at the university. Prof. Lu earned his Ph.D. in Computational Mathematics from Xiangtan University and has since focused his career on numerical solutions of partial differential equations and optimal control theory. He has authored over 60 peer-reviewed journal articles and several academic books. His work bridges mathematics, environmental science, and economics, particularly in the context of sustainable development in the Three Gorges Reservoir Area. Prof. Lu’s innovative research includes stochastic differential game models for pollution control and real-options theory for resource management. His contributions have been recognized through prestigious awards, including the Chongqing Natural Science Award and the Chongqing Outstanding Middle-aged and Young Backbone Teacher Award. He has led key national and municipal research projects and served as a reviewer and editorial board member for top international journals. Prof. Lu has also mentored many postgraduate students, several of whom have progressed to doctoral studies. His interdisciplinary approach has influenced policy-making and improved regional environmental governance, solidifying his reputation as a leader in applied computational mathematics in China.

📝Publication Profile

Scopus

🎓Education

Prof. Zuliang Lu completed his Ph.D. in Computational Mathematics at Xiangtan University, one of China’s respected institutions for mathematical research. During his doctoral studies, he developed deep expertise in partial differential equations, optimal control theory, and computational simulation techniques, laying the foundation for his future interdisciplinary work. His educational background provided him with robust analytical and computational skills essential for tackling real-world challenges in environmental and industrial systems. Prof. Lu’s academic training emphasized rigorous mathematical modeling, algorithm development, and numerical analysis, which later became central to his career. His ability to apply theoretical mathematics to practical problems—such as environmental policy, water resource management, and pollution control—demonstrates the breadth and depth of his academic preparation. Throughout his studies, he consistently demonstrated a commitment to academic excellence and innovative thinking. These qualities have continued to define his professional endeavors and research contributions. Prof. Lu also regularly engages in continuing education, international workshops, and collaborative academic programs, keeping him at the forefront of developments in computational mathematics and applied sciences. His strong educational foundation is reflected in his capacity to lead multidisciplinary research teams and mentor the next generation of computational scientists.

💼Professional Experience

Prof. Zuliang Lu currently holds dual leadership roles as Director of both the Information Technology Center and the Experimental Training Center at Chongqing Three Gorges University. In these capacities, he oversees the university’s technological infrastructure and laboratory innovation systems while spearheading advanced training initiatives for students and faculty. His career spans over two decades, during which he has led key national and municipal research projects in applied mathematics and environmental modeling. Prof. Lu has also worked extensively with governmental and academic bodies, including collaborations with the Wanzhou District Government and the Chongqing Statistical Society. These engagements reflect his strong commitment to research that addresses societal challenges. As a senior faculty member, he has been instrumental in developing research platforms and improving the university’s research culture. In addition to teaching advanced mathematics and computational science courses, Prof. Lu has mentored numerous postgraduate students. His international experience includes collaborations with the Chinese Academy of Sciences and Nanyang Technological University in Singapore, expanding his global perspective and fostering interdisciplinary innovations. His professional career exemplifies a combination of academic leadership, applied research excellence, and community engagement.

🔬Research Interest

Prof. Lu’s research interests center around computational mathematics, with a particular emphasis on the numerical solution of partial differential equations, finite element methods, and optimal control problems. His work often extends into applied domains, including environmental modeling, pollution control, resource management, and carbon emission prediction. Notably, Prof. Lu has developed sophisticated mathematical models for understanding cross-border pollution, ecological compensation, and sustainable water resource utilization in the Three Gorges Reservoir Area. His interdisciplinary research integrates principles from mathematics, environmental science, economics, and policy-making. He has innovated stochastic differential game models and real options-based models to simulate real-world ecological and energy systems. These models have provided insights into the economic and ecological consequences of pollution and energy use, assisting in the formulation of public policy. His research also explores simulation techniques such as the Runge–Kutta method and Pontryagin’s maximum principle, advancing the computational tools used for system analysis. Prof. Lu’s research is characterized by a strong commitment to real-world impact, reflected in multiple government-funded projects and policy advisories. His interdisciplinary and application-oriented approach makes his work relevant to both academia and industry.

🧠Research Skills

Prof. Zuliang Lu possesses a comprehensive suite of research skills that span both theoretical and applied mathematics. He is highly proficient in numerical analysis, particularly finite element methods, finite volume methods, and stochastic modeling. His expertise in computational simulation allows him to build and analyze models for complex systems involving differential equations, control theory, and environmental phenomena. Prof. Lu regularly employs Pontryagin’s maximum principle, Markov processes, and Runge–Kutta numerical methods for simulating dynamic systems. He has also incorporated real options theory into environmental management models to address the uncertainty and timing of investment decisions in ecological protection. His technical toolkit includes high-level programming and modeling languages essential for scientific computing and data visualization. Additionally, Prof. Lu is skilled in empirical analysis and data-driven modeling using real-world environmental and economic datasets. His ability to bridge abstract mathematical theories with practical, policy-relevant problems showcases his strength in interdisciplinary research. These skills have been instrumental in his leadership of projects funded by the National Natural Science Foundation of China and the China Postdoctoral Science Foundation, among others. Prof. Lu’s research capabilities continue to influence policymaking and foster sustainable development in ecologically sensitive regions like the Three Gorges Reservoir Area.

🏆Awards and Honors

Prof. Zuliang Lu’s academic and professional achievements have earned him several prestigious awards. He is the recipient of the Chongqing Natural Science Award, recognizing his innovative research in computational modeling and environmental science. He has also been honored with the Chongqing Outstanding Middle-aged and Young Backbone Teacher Award, which acknowledges his leadership in academic mentoring and education reform. These accolades reflect his dual commitment to high-impact research and teaching excellence. His work has received competitive funding from national and regional bodies, including the National Natural Science Foundation of China, the National Social Science Fund, and the China Postdoctoral Science Foundation. His contributions to the simulation and control of water pollution, cross-border pollution governance, and carbon emission prediction have gained wide recognition from domestic and international experts. He has played key roles in projects that influence public policy, including collaborations with the Wanzhou District Statistical Society and the Chongqing Science and Technology Bureau. As a scholar, educator, and research leader, Prof. Lu has been an important figure in advancing applied mathematics for environmental sustainability and public welfare, earning him widespread acclaim in both academic and governmental circles.

📈Author Metrics

  • Total Citations: 594

  • Citing Documents: 307

  • Total Publications: 93

  • h-index: 13

  • Primary Indexing Databases: Science Citation Index (SCI), Engineering Index (EI)

These metrics reflect Prof. Zuliang Lu’s consistent scholarly output and impact in the fields of computational mathematics, optimal control, and numerical methods. His research has garnered significant attention from the academic community, with hundreds of citations across top-tier journals. An h-index of 13 demonstrates a sustained influence, with at least 13 of his papers each cited 13 times or more, reflecting both productivity and relevance in his area of expertise.

📌Publications Top Notes

1. A fast inertial self-adaptive projection based algorithm for solving large-scale nonlinear monotone equations

  • Journal: Journal of Computational and Applied Mathematics

  • Year: 2023

  • Citations: 11

2. An approximate gradient-type method for nonlinear symmetric equations with convex constraints

  • Journal: Journal of Computational and Applied Mathematics

  • Year: 2023

  • Citations: 3

3. The research of river basin ecological compensation based on water emissions trading mechanism

  • Journal: Water Science and Technology

  • Year: 2024

  • Citations: 1

4. Research on basin ecological compensation in the Yangtze River Economic Belt based on the three-way-decision theory

  • Journal: Applied Mathematical Modelling

  • Year: 2025

  • Citations: 0

5. A stochastic differential game based pollution management study of regional alliance

  • Journal: Environmental Development

  • Year: 2025

  • Citations: 0

🧾Conclusion

Prof. Zuliang Lu stands at the intersection of mathematics, environmental science, and public policy, with a career that exemplifies excellence in research, education, and leadership. His innovative use of computational models to address pollution, carbon emissions, and water resource management has significantly contributed to sustainable development strategies, particularly in the Three Gorges Reservoir Area. As an academic, he has consistently published in high-impact journals, served on editorial boards, and reviewed for international publications. His mentorship has nurtured the next generation of scientists and engineers, several of whom have pursued advanced research careers. Prof. Lu’s influence extends beyond academia through impactful collaborations with local governments and scientific institutions across China and internationally. His dedication to interdisciplinary research, teaching innovation, and social responsibility defines him as a thought leader in computational mathematics and applied environmental modeling. With a strong foundation in mathematical theory and a vision for real-world application, Prof. Lu continues to inspire policy changes and academic progress alike. His career is a testament to the power of scientific inquiry when it is grounded in public good and directed toward solving urgent societal challenges.