Kaihua Zhang | Sustainable Materials | Best Researcher Award

Mr. Kaihua Zhang | Sustainable Materials | Best Researcher Award

Student | Inner Mongolia University of Science and Technology | China

Mr. Kaihua Zhang is a dedicated researcher at the School of Rare Earth Industry, Inner Mongolia University of Science and Technology, Baotou, China. His academic and research journey reflects a strong commitment to advancing the fields of aluminum and magnesium alloy development, industrial application and digital innovation in metallurgy. With a focus on strengthening lightweight materials for aviation and high-performance engineering, he has contributed to projects addressing large-scale alloy production, electromagnetic pulping, and intelligent manufacturing technologies. His work emphasizes bridging theoretical studies with industrial applications, ensuring that laboratory research translates into real-world technological advancements. Mr. Kaihua Zhang’s scientific contributions highlight his ability to integrate advanced experimental techniques, metallurgical insights, and collaborative problem-solving. His internship at a leading research institute further enriched his experimental and applied research expertise. Through his active participation in high-impact projects and publications, he demonstrates strong potential to become a leading figure in rare earth alloy research and application.

Publication Profile

Scopus

Education

Mr. Kaihua Zhang received his academic training at the School of Rare Earth Industry, Inner Mongolia University of Science and Technology, where he built a strong foundation in materials science, metallurgical engineering, and alloy development. His education emphasized both theoretical understanding and practical application of modern metallurgical processes, particularly in the field of rare earth-based alloys. By focusing on the integration of rare earth elements into advanced materials, his studies equipped him with a solid grounding in solidification theory, alloy design, microstructural control, and industrial processing. During his university training, he engaged in multiple research activities that allowed him to combine classroom learning with experimental practice. These academic experiences not only sharpened his technical expertise but also instilled in him a systematic approach to scientific research. His educational journey prepared him to tackle complex metallurgical challenges and to contribute meaningfully to the advancement of high-strength, lightweight alloy systems.

Professional Experience

Mr. Kaihua Zhang has gained extensive professional research experience through his active participation in several large-scale scientific and industrial projects. His involvement includes the development and application of advanced aluminum alloys for aviation, where he focused on enhancing strength and toughness while ensuring scalability for industrial use. In another significant project, he contributed to the advancement of rare earth magnesium alloy composite technologies, employing electromagnetic pulping methods to refine microstructures and improve overall material properties. His expertise also extends to intelligent manufacturing and digital upgrading of alloy processing, reflecting his commitment to integrating modern computational and automation tools with metallurgy. Beyond project-based research, Mr. Kaihua Zhang also enhanced his technical skills during his internship at a leading national defense research institute, where he applied his academic knowledge to practical experiments and high-standard testing environments. These professional experiences have provided him with both technical depth and interdisciplinary collaboration abilities.

Research Interest

Mr. Kaihua Zhang’s research interests lie at the intersection of materials science, metallurgy, and industrial application, with a particular focus on aluminum and magnesium alloys. He is deeply interested in the mechanisms of microstructural evolution during solidification, segregation control, and the role of electromagnetic forces in influencing alloy properties. His work reflects a strong interest in rare earth element integration, where he seeks to optimize performance and sustainability of alloys for high-demand sectors such as aviation and defense. Another key area of interest is the digital transformation of alloy processing, where intelligent manufacturing systems and advanced simulations are employed to improve efficiency, quality control, and scalability. His long-term goal is to contribute to the next generation of high-strength, lightweight, and environmentally friendly alloys that can meet the demands of modern industry. These interests collectively define his commitment to advancing metallurgical innovation and industrial technology.

Research Skills

Mr. Kaihua Zhang has developed a strong set of research skills that enable him to contribute effectively to both academic and industrial projects. He possesses expertise in alloy design, particularly with aluminum and magnesium systems, and is proficient in experimental techniques for solidification and microstructural analysis. His work on electromagnetic pulping has enhanced his ability to study the effects of field distributions on alloy behavior, ensuring precise control over segregation and grain refinement. He is skilled in the use of laboratory-scale casting, testing and analysis equipment, with competencies in metallographic analysis, mechanical testing, and phase identification. His research also extends to data-driven approaches, reflecting his adaptability to modern trends in intelligent manufacturing. Furthermore, his internship experience allowed him to refine his experimental methodology under rigorous industrial standards. These research skills collectively reflect a balanced combination of theoretical knowledge, experimental capability, and practical application in metallurgy.

Awards and Honors

Throughout his academic and professional journey, Mr. Kaihua Zhang has distinguished himself through notable achievements and recognitions. His contribution to alloy research led to co-authorship in a peer-reviewed journal article published in the Journal of Alloys and Compounds, which highlights his ability to produce impactful scientific work. His active participation in prestigious projects reflects the trust placed in his expertise by leading researchers in the field. Recognition of his academic excellence and research potential has also been reinforced through opportunities to participate in state-level research programs, demonstrating his growing reputation within the scientific community. His internship selection at a leading national defense research institute further stands as a testimony to his capability and promise as a materials researcher. These experiences and achievements collectively underscore his dedication, scholarly impact, and professional growth in the specialized area of rare earth-based alloy research.

Author Metrics

  • Total Citations: 2

  • Total Publications: 2

  • h-index: 1

These metrics reflect Mr. Kaihua Zhang’s early contributions to the field of materials science, with published research already cited by peer-reviewed works. His citation record is expected to grow significantly as his ongoing projects and collaborations yield further impactful publications.

Publications Top Notes

1. Heat transfer, crystallization and properties of Bayan Obo tailings-based nanocrystalline glass-ceramics processed with microwave radiation
Citations: 2
Year: 2024

Conclusion

Mr. Kaihua Zhang represents a new generation of materials researchers committed to advancing rare earth alloy technologies for industrial and defense applications. His academic training, professional experience, and scientific contributions position him as a promising scholar with both technical depth and practical insight. By combining fundamental research with applied development, he bridges the gap between laboratory innovation and industrial implementation. His work in alloy design, electromagnetic pulping and intelligent manufacturing reflects his forward-looking approach to metallurgical engineering. With strong research skills and collaborative spirit, he is prepared to take on increasingly challenging projects that contribute to scientific advancement and technological progress. His achievements to date highlight not only his individual capability but also his potential to make long-term contributions to the global materials science community. Mr. Kaihua Zhang’s journey reflects resilience, curiosity, and an unwavering commitment to innovation in metallurgy.

 

Xinqian Shu | Environmental | Best Researcher Award

Prof. Dr. Xinqian Shu | Environmental | Best Researcher Award

Professor at China University of Mining and Technology-Beijing, China.

Prof. Dr. Xinqian Shu is a leading expert in the fields of clean energy, solid waste treatment, and resource recycling, with decades of dedication to advancing sustainable technologies in China. He has served as the Director of the Institute of Clean Energy and Environmental Engineering at China University of Mining and Technology (Beijing), where he also acts as a doctoral supervisor. Prof. Shu has led over 50 major research projects funded by national and provincial bodies, including the National Key R&D Program of China, the National Natural Science Foundation of China, and strategic scientific programs across Shaanxi, Shanxi, and Xinjiang provinces. In collaboration with major enterprises such as China Coal Energy Group, China Huaneng Group, and Jinergy Holding Group, he has contributed significantly to energy efficiency and environmental protection. Prof. Shu’s academic impact is reflected in over 260 peer-reviewed publications and more than 40 granted invention patents in China and the United States. He has authored three books and received eight prestigious awards from regional governments and the China Coal Industry. His professional affiliations include council memberships in thermal physics, solid waste, and mineral resource utilization. Prof. Shu continues to influence national science and environmental policy through his expert advisory roles.

📝Publication Profile

Scopus

Orcid

Google Scholar

🎓Education

Prof. Dr. Xinqian Shu pursued his higher education in engineering and environmental sciences in China, laying a strong academic foundation that supports his expertise in clean energy and waste recycling. He completed his undergraduate, postgraduate, and doctoral studies in institutions renowned for their focus on mining, energy, and environmental engineering, culminating in a Ph.D. in Environmental or Energy-related Engineering (exact university and degree titles are not explicitly stated in the source and would need to be specified). Throughout his academic journey, Prof. Shu developed strong competencies in thermodynamics, resource recovery, solid waste treatment, and the integration of energy systems with environmental protection. His advanced training has enabled him to supervise numerous doctoral students and research fellows, fostering a new generation of scientists and engineers. His academic background continues to underpin his leadership in large-scale national and industrial research projects. Prof. Shu’s education not only provided him with technical expertise but also instilled a deep commitment to sustainable development and innovation in energy and environmental sectors. His educational credentials have positioned him as a national figure in scientific policy advising and technological development.

💼Professional Experience

Prof. Dr. Xinqian Shu has held several influential academic and administrative positions, most notably serving as the Director of the Institute of Clean Energy and Environmental Engineering at China University of Mining and Technology (Beijing). In this role, he has overseen the development and implementation of research initiatives focused on resource recycling and environmental technology. He has acted as principal investigator for over 50 high-profile projects, including those under China’s National Key Research and Development Program, regional science and technology special initiatives in Shaanxi, Shanxi, and Xinjiang, and collaborations with leading energy and industrial corporations. Prof. Shu has been appointed to advisory and expert review roles for several national scientific and environmental agencies. He serves as a council member of both the Beijing Society of Thermal Physics and Engineering and the Organic Solid Waste Committee of the Society of China Nonferrous Metals. Additionally, he is a member of the Academic Committee for the Ministry of Natural Resources’ Key Laboratory of Coal Resource Exploration. His strategic involvement in the Second Batch of Ecological Environmental Protection-Oriented Development (EOD) Model Pilot Projects reflects his pivotal role in shaping China’s environmental protection policies and technologies.

🔬Research Interest

Prof. Dr. Xinqian Shu’s research interests span a broad yet interrelated set of disciplines within clean energy and environmental science. His core focus areas include solid waste treatment and resource recycling, energy utilization, and pollution control, particularly from coal and organic solid waste. He is also deeply engaged in the comprehensive utilization of non-metallic mineral resources, targeting industrial waste conversion into usable products and renewable energy. His work integrates fundamental research with applied engineering to address some of China’s most pressing environmental challenges. Through his exploration of ecological treatment methods and circular economy frameworks, Prof. Shu aims to enhance energy efficiency and reduce environmental impact. His projects often emphasize the valorization of industrial by-products, development of clean combustion technologies, and low-emission utilization of fossil and alternative fuels. This multidisciplinary approach positions Prof. Shu at the nexus of scientific innovation, policy impact, and industrial application. His research directly contributes to national priorities in sustainable development, pollution reduction, and green technology advancement.

🧠Research Skills

Prof. Dr. Xinqian Shu possesses advanced research skills that bridge fundamental science with industrial application. He specializes in the design and optimization of technologies for the treatment of solid waste, recovery of resources from industrial by-products, and the enhancement of clean energy systems. His methodological expertise includes thermal process modeling, pilot-scale system development, lifecycle analysis, and environmental impact assessment. Prof. Shu is adept at managing large-scale, multidisciplinary research teams and coordinating multi-stakeholder projects across academia, industry, and government agencies. He is also skilled in translating laboratory-scale innovations into practical technologies deployed in coal-based and renewable energy sectors. His ability to integrate policy, environmental engineering, and industrial technology makes him a national leader in applied clean energy research. Prof. Shu’s experience extends to patent writing and technology transfer, demonstrated by his portfolio of over 40 China and US invention patents. His proficiency in both theoretical and applied research supports his continued contributions to national innovation systems and environmental sustainability.

🏆Awards and Honors

Prof. Dr. Xinqian Shu has received multiple prestigious awards in recognition of his scientific excellence and impactful contributions to energy and environmental engineering. He has been honored with eight awards from various provincial and national institutions, including the Beijing Municipality, Shaanxi Province, and Shanxi Province, as well as the China Coal Industry Science and Technology Progress Award. These accolades underscore his role in advancing technological solutions to some of China’s most critical challenges in energy and waste management. His leadership in projects under the National Key R&D Program and his involvement in the Ministry of Ecology and Environment’s EOD Model Pilot Projects have further established him as an expert advisor and innovator. Prof. Shu’s achievements are also evident in his intellectual property portfolio, which includes over 40 patents granted in both China and the United States. His recognition is not only a testament to his scientific acumen but also reflects the societal and industrial relevance of his work in sustainable development and ecological protection.

📈Author Metrics

  • Total Citations: 2,331

  • Citations by Documents: 1,745

  • Total Publications: 136

  • h-index: 27

These metrics reflect Prof. Dr. Shu’s impactful and consistent contributions to the academic and scientific community, demonstrating both productivity and influence in his field.

📌Publications Top Notes

1. Lignocellulose hydrothermal artificial humic acid production: Reaction parameters screening and investigation of model/real feedstock

  • Authors: Changzhi Song; Libo Zhang; Jianing Wang; Xinyu Yu; Yepeng Xiao; Lihua Cheng; Xinqian Shu

  • Journal: Journal of Analytical and Applied Pyrolysis

  • Year: 2024

  • Citations: 7

2. Mechanism study on the generation of oxygen vacancies by ball milling surface modification of siliceous minerals in coal gangue to enhance reactivity

  • Authors: Huixin Zhou, Dingxun Ma, Lingwen Dai, Yichao Wang, Xiaoling Ren, Xiaozhen Liu, Xumin Li, Haijiao Xie, Xinqian Shu

  • Journal: Applied Surface Science

  • Year: 2025

  • Citations: 4

3. Competitive Adsorption of Pb²⁺ from Aqueous Solutions by Multi-Source Lignocellulose-Derived Hydrothermal Humic Acid

  • Authors: Changzhi Song, Junhao Liu, Libo Zhang, Jianing Wang, Xinqian Shu

  • Journal: Processes

  • Year: 2025

  • Citations: 3

4. Machine learning constructs the microstructure and mechanical properties that accelerate the development of CFRP pyrolysis for carbon-fiber recycling

  • Authors: Lingwen Dai, Xiaomin Hu, Congcong Zhao, Huixin Zhou, Zhiji Zhang, Yichao Wang, Shuai Ma, Xiaozhen Liu, Xumin Li, Xinqian Shu

  • Journal: Waste Management

  • Year: 2024

  • Citations: 2

5. Physicochemical, kinetic, and bond-energy analyses of the pyrolysis of carbon-fiber-reinforced polymer waste

  • Authors: Lingwen Dai, Xiaomin Hu, Huixin Zhou, Xiaozhen liu, Yuchen Wu, Liru Sun, Xinqian Shu

  • Journal: Journal of Analytical and Applied Pyrolysis

  • Year: 2025

  • Citations: 1

🧾Conclusion

Prof. Dr. Xinqian Shu stands out as a visionary scientist and educator in the fields of energy efficiency, environmental engineering, and solid waste utilization. With a prolific research career, he has shaped national and regional strategies for clean energy deployment and industrial sustainability. His leadership at China University of Mining and Technology (Beijing), combined with his coordination of over 50 major projects, underscores his capacity to bridge research, policy, and industry. Prof. Shu’s academic output, including over 260 publications, three monographs, and numerous patents, demonstrates his commitment to innovation and practical impact. His awards and professional memberships reflect recognition from the scientific community and government bodies alike. As a scholar, mentor, and strategic advisor, Prof. Shu continues to influence environmental policy, technological advancement, and sustainable practices across China. His contributions have laid a robust foundation for the next generation of researchers and continue to drive progress toward a circular economy and ecological civilization.