Mrs. Jun Liu | Climate Change | Best Researcher Award
Director, Taiyuan University of Technology, China
Mrs. Jun Liu is an Associate Professor at the College of Geological and Surveying Engineering, Taiyuan University of Technology, specializing in remote sensing applications with a strong focus on climate change, carbon estimation, and drought monitoring. She earned her Ph.D. in Remote Sensing of Environment from Nanjing University, China (2012), following a Master’s degree in Remote Sensing of Geological Disaster (2006) and a Bachelor’s degree in Surveying Engineering (2003), both from Taiyuan University of Technology. Her professional experience includes serving as a lecturer at Shanxi Engineering Vocational College (2006–2013), an associate professor since 2013 and a visiting fellow at the Australian National University (2017–2018). Mrs. Jun Liu’s research interests revolve around applying advanced satellite and geospatial technologies to monitor environmental changes and develop sustainable solutions. Her research skills include geospatial data analysis, environmental monitoring, carbon accounting and interdisciplinary project collaboration. She has published extensively in leading international journals and conferences, with 124 documents, 3,189 citations and an h-index of 31, reflecting her academic influence. Recognized for her scholarly contributions, she has earned respect as a dedicated educator and researcher. In conclusion, Mrs. Jun Liu’s impactful research, global collaborations and commitment to addressing climate challenges position her as a deserving candidate for prestigious academic recognition.
1. Sun, Y., Liu, L., Jiang, L., Chen, Y., Zhang, H., Xu, X., & Liu, Y.* (2023). Unimolecular chiral stepping inversion machine. Journal of the American Chemical Society, 145(28), 16711.
2. Liu, J., Tian, Q., Huang, Y., Du, L., & Wang, L. (2011, June 24–26). Extraction of the corn planting area based on multi-temporal HJ-1 satellite data. The 19th International Conference on Geoinformatics, Shanghai, China. (Accession No. 20113614308210).
3. Liu, J., Tian, Q., Huang, Y., & Du, L. (2012). Dynamic monitoring of summer maize planting information for spatial and temporal variations in Huanghuaihai plain during 2000–2010. Spectroscopy and Spectral Analysis, 32(9), 2534–2539.
4. Liu, J., Tian, Q., Huang, Y., & Du, L. (2013). Monitoring phenology of summer maize in Huanghuaihai using remote sensing technology. Remote Sensing Information, 28(3), 85–90.
5. Liu, J., Tian, Q., Huang, Y., & Du, L. (2012, August 11–13). Extraction of summer maize using MODIS EVI time series in the Huanghuaihai plain. International Conference on Computer Science and Service System, Nanjing, China. (Accession No. 20130615981764).
Director at Information Technology Center of Chongqing Three Gorges University, China.
Prof. Zuliang Lu is a distinguished computational mathematician and professor at Chongqing Three Gorges University. He serves as Director of both the Information Technology Center and the Experimental Training Center at the university. Prof. Lu earned his Ph.D. in Computational Mathematics from Xiangtan University and has since focused his career on numerical solutions of partial differential equations and optimal control theory. He has authored over 60 peer-reviewed journal articles and several academic books. His work bridges mathematics, environmental science, and economics, particularly in the context of sustainable development in the Three Gorges Reservoir Area. Prof. Lu’s innovative research includes stochastic differential game models for pollution control and real-options theory for resource management. His contributions have been recognized through prestigious awards, including the Chongqing Natural Science Award and the Chongqing Outstanding Middle-aged and Young Backbone Teacher Award. He has led key national and municipal research projects and served as a reviewer and editorial board member for top international journals. Prof. Lu has also mentored many postgraduate students, several of whom have progressed to doctoral studies. His interdisciplinary approach has influenced policy-making and improved regional environmental governance, solidifying his reputation as a leader in applied computational mathematics in China.
Prof. Zuliang Lu completed his Ph.D. in Computational Mathematics at Xiangtan University, one of China’s respected institutions for mathematical research. During his doctoral studies, he developed deep expertise in partial differential equations, optimal control theory, and computational simulation techniques, laying the foundation for his future interdisciplinary work. His educational background provided him with robust analytical and computational skills essential for tackling real-world challenges in environmental and industrial systems. Prof. Lu’s academic training emphasized rigorous mathematical modeling, algorithm development, and numerical analysis, which later became central to his career. His ability to apply theoretical mathematics to practical problems—such as environmental policy, water resource management, and pollution control—demonstrates the breadth and depth of his academic preparation. Throughout his studies, he consistently demonstrated a commitment to academic excellence and innovative thinking. These qualities have continued to define his professional endeavors and research contributions. Prof. Lu also regularly engages in continuing education, international workshops, and collaborative academic programs, keeping him at the forefront of developments in computational mathematics and applied sciences. His strong educational foundation is reflected in his capacity to lead multidisciplinary research teams and mentor the next generation of computational scientists.
💼Professional Experience
Prof. Zuliang Lu currently holds dual leadership roles as Director of both the Information Technology Center and the Experimental Training Center at Chongqing Three Gorges University. In these capacities, he oversees the university’s technological infrastructure and laboratory innovation systems while spearheading advanced training initiatives for students and faculty. His career spans over two decades, during which he has led key national and municipal research projects in applied mathematics and environmental modeling. Prof. Lu has also worked extensively with governmental and academic bodies, including collaborations with the Wanzhou District Government and the Chongqing Statistical Society. These engagements reflect his strong commitment to research that addresses societal challenges. As a senior faculty member, he has been instrumental in developing research platforms and improving the university’s research culture. In addition to teaching advanced mathematics and computational science courses, Prof. Lu has mentored numerous postgraduate students. His international experience includes collaborations with the Chinese Academy of Sciences and Nanyang Technological University in Singapore, expanding his global perspective and fostering interdisciplinary innovations. His professional career exemplifies a combination of academic leadership, applied research excellence, and community engagement.
🔬Research Interest
Prof. Lu’s research interests center around computational mathematics, with a particular emphasis on the numerical solution of partial differential equations, finite element methods, and optimal control problems. His work often extends into applied domains, including environmental modeling, pollution control, resource management, and carbon emission prediction. Notably, Prof. Lu has developed sophisticated mathematical models for understanding cross-border pollution, ecological compensation, and sustainable water resource utilization in the Three Gorges Reservoir Area. His interdisciplinary research integrates principles from mathematics, environmental science, economics, and policy-making. He has innovated stochastic differential game models and real options-based models to simulate real-world ecological and energy systems. These models have provided insights into the economic and ecological consequences of pollution and energy use, assisting in the formulation of public policy. His research also explores simulation techniques such as the Runge–Kutta method and Pontryagin’s maximum principle, advancing the computational tools used for system analysis. Prof. Lu’s research is characterized by a strong commitment to real-world impact, reflected in multiple government-funded projects and policy advisories. His interdisciplinary and application-oriented approach makes his work relevant to both academia and industry.
🧠Research Skills
Prof. Zuliang Lu possesses a comprehensive suite of research skills that span both theoretical and applied mathematics. He is highly proficient in numerical analysis, particularly finite element methods, finite volume methods, and stochastic modeling. His expertise in computational simulation allows him to build and analyze models for complex systems involving differential equations, control theory, and environmental phenomena. Prof. Lu regularly employs Pontryagin’s maximum principle, Markov processes, and Runge–Kutta numerical methods for simulating dynamic systems. He has also incorporated real options theory into environmental management models to address the uncertainty and timing of investment decisions in ecological protection. His technical toolkit includes high-level programming and modeling languages essential for scientific computing and data visualization. Additionally, Prof. Lu is skilled in empirical analysis and data-driven modeling using real-world environmental and economic datasets. His ability to bridge abstract mathematical theories with practical, policy-relevant problems showcases his strength in interdisciplinary research. These skills have been instrumental in his leadership of projects funded by the National Natural Science Foundation of China and the China Postdoctoral Science Foundation, among others. Prof. Lu’s research capabilities continue to influence policymaking and foster sustainable development in ecologically sensitive regions like the Three Gorges Reservoir Area.
🏆Awards and Honors
Prof. Zuliang Lu’s academic and professional achievements have earned him several prestigious awards. He is the recipient of the Chongqing Natural Science Award, recognizing his innovative research in computational modeling and environmental science. He has also been honored with the Chongqing Outstanding Middle-aged and Young Backbone Teacher Award, which acknowledges his leadership in academic mentoring and education reform. These accolades reflect his dual commitment to high-impact research and teaching excellence. His work has received competitive funding from national and regional bodies, including the National Natural Science Foundation of China, the National Social Science Fund, and the China Postdoctoral Science Foundation. His contributions to the simulation and control of water pollution, cross-border pollution governance, and carbon emission prediction have gained wide recognition from domestic and international experts. He has played key roles in projects that influence public policy, including collaborations with the Wanzhou District Statistical Society and the Chongqing Science and Technology Bureau. As a scholar, educator, and research leader, Prof. Lu has been an important figure in advancing applied mathematics for environmental sustainability and public welfare, earning him widespread acclaim in both academic and governmental circles.
📈Author Metrics
Total Citations: 594
Citing Documents: 307
Total Publications: 93
h-index: 13
Primary Indexing Databases: Science Citation Index (SCI), Engineering Index (EI)
These metrics reflect Prof. Zuliang Lu’s consistent scholarly output and impact in the fields of computational mathematics, optimal control, and numerical methods. His research has garnered significant attention from the academic community, with hundreds of citations across top-tier journals. An h-index of 13 demonstrates a sustained influence, with at least 13 of his papers each cited 13 times or more, reflecting both productivity and relevance in his area of expertise.
📌Publications Top Notes
1. A fast inertial self-adaptive projection based algorithm for solving large-scale nonlinear monotone equations
Journal: Journal of Computational and Applied Mathematics
Year: 2023
Citations: 11
2. An approximate gradient-type method for nonlinear symmetric equations with convex constraints
Journal: Journal of Computational and Applied Mathematics
Year: 2023
Citations: 3
3. The research of river basin ecological compensation based on water emissions trading mechanism
Journal: Water Science and Technology
Year: 2024
Citations: 1
4. Research on basin ecological compensation in the Yangtze River Economic Belt based on the three-way-decision theory
Journal: Applied Mathematical Modelling
Year: 2025
Citations: 0
5. A stochastic differential game based pollution management study of regional alliance
Journal: Environmental Development
Year: 2025
Citations: 0
🧾Conclusion
Prof. Zuliang Lu stands at the intersection of mathematics, environmental science, and public policy, with a career that exemplifies excellence in research, education, and leadership. His innovative use of computational models to address pollution, carbon emissions, and water resource management has significantly contributed to sustainable development strategies, particularly in the Three Gorges Reservoir Area. As an academic, he has consistently published in high-impact journals, served on editorial boards, and reviewed for international publications. His mentorship has nurtured the next generation of scientists and engineers, several of whom have pursued advanced research careers. Prof. Lu’s influence extends beyond academia through impactful collaborations with local governments and scientific institutions across China and internationally. His dedication to interdisciplinary research, teaching innovation, and social responsibility defines him as a thought leader in computational mathematics and applied environmental modeling. With a strong foundation in mathematical theory and a vision for real-world application, Prof. Lu continues to inspire policy changes and academic progress alike. His career is a testament to the power of scientific inquiry when it is grounded in public good and directed toward solving urgent societal challenges.
Prof. Dr. Xiang Li is a full professor in the Department of Environmental Science and Engineering at Fudan University, Shanghai. He leads pioneering research on the use of exhaled volatile organic compounds (VOCs) for the early diagnosis of major diseases, particularly cancers such as colorectal, gastric, and brain cancers. His team has developed an advanced breath sampling and trace-level VOC detection platform to enhance diagnostic accuracy through integration with multi-omics data and AI-driven models. Prof. Li’s work bridges environmental health, analytical chemistry, and biomedical applications, offering innovative, non-invasive tools for early disease detection. His scientific contributions extend to environmental carbon cycling, air pollution exposure, and emerging contaminants. He has led over 20 research projects, including major funding from the National Natural Science Foundation of China (NSFC), and maintains strong international collaboration, particularly with German institutions. Prof. Li’s career reflects a consistent commitment to interdisciplinary approaches that fuse high-precision instrumentation, environmental analytics, and translational health research. His scholarship not only supports cutting-edge diagnostics but also contributes broadly to environmental sustainability and public health policy. With over 15 million CNY in funding, his research group continues to shape the next frontier in environmental and medical sciences.
Prof. Dr. Xiang Li holds a Ph.D. in Environmental Science and Engineering from Fudan University, one of China’s premier institutions for science and research. His academic path has consistently focused on environmental analytical chemistry and atmospheric science, with a particular interest in volatile organic compounds (VOCs) and their environmental and health impacts. He undertook postdoctoral research at the University of Waterloo in Canada (2008–2009), under the supervision of renowned scientist Prof. Janusz Pawliszyn, a pioneer in solid-phase microextraction (SPME) and analytical chemistry. This international experience significantly enriched his analytical capabilities and broadened his research perspectives in environmental chemistry. Additionally, Prof. Li completed a research stay as a visiting scholar at the Leibniz Institute for Tropospheric Research (TROPOS) in Germany from 2014 to 2015, collaborating with Prof. Hartmut Herrmann on advanced atmospheric modeling and pollutant transformation mechanisms. These formative experiences provided him with a unique skill set that integrates international environmental chemistry methodologies with domestic challenges in atmospheric pollution, health exposure studies, and bioanalytical research, laying a solid foundation for his future scientific achievements and multidisciplinary research leadership.
Professional Experience
Prof. Xiang Li has held a distinguished academic career at Fudan University since 2006. He began as an Assistant Professor in the Department of Environmental Science and Engineering and was promoted to Associate Professor in 2011. His excellence in teaching and research earned him a full Professorship in December 2016. Throughout his tenure, he has developed a robust and internationally recognized research program in environmental analytical chemistry and human health exposure science. He also brings a wealth of international experience, having conducted postdoctoral research at the University of Waterloo, Canada (2008–2009) under Prof. Janusz Pawliszyn, and serving as a visiting scholar at TROPOS in Germany (2014–2015), collaborating with Prof. Hartmut Herrmann. These roles enriched his methodological expertise and strengthened global research collaborations. Prof. Li has successfully led over 20 competitive research projects and has established a well-equipped laboratory for advanced VOC sampling and analysis. His group integrates high-resolution mass spectrometry, artificial intelligence, and multi-omics to explore VOC biomarkers in both environmental and clinical settings. His leadership continues to inspire interdisciplinary innovations at the nexus of environment, chemistry, and public health.
Research Interest
Prof. Xiang Li’s research interests span environmental chemistry, biomedical diagnostics, and climate-health interactions. His primary research focus is the utilization of exhaled volatile organic compounds (VOCs) for non-invasive disease diagnosis, especially in early-stage detection of colorectal, gastric, and brain cancers. Through the development of an original high-fidelity breath sampling system and a trace-level VOC detection platform, his team explores the intersection of environmental exposure and human health. Prof. Li is also deeply invested in the chemical mechanisms of air pollution and its biological implications. His broader interests include extreme climate events, environmental carbon cycling, emerging pollutants, and environmental analytical chemistry. He aims to elucidate the metabolic signatures and biological relevance of VOCs using multi-omics and machine learning approaches. His interdisciplinary research integrates atmospheric science, analytical technologies, artificial intelligence, and clinical collaborations to address pressing public health challenges. Prof. Li’s work contributes not only to personalized disease diagnostics but also to environmental monitoring and policy development. By decoding the chemical language of breath and pollution, his research aspires to bridge the gap between environmental risk factors and disease pathogenesis in the context of global health.
Research Skills
Prof. Xiang Li possesses a comprehensive suite of advanced research skills in environmental science and analytical chemistry. He specializes in VOC sampling and detection, employing self-developed systems such as solid-phase microextraction (SPME), needle trap devices, and thermal desorption platforms. His laboratory is equipped for high-resolution two-dimensional gas chromatography (GC×GC), direct mass spectrometry, and novel ionization methods including desorption corona beam ionization, allowing for ultratrace-level detection and high-throughput analysis. He is also skilled in multi-omics integration—combining metabolomics, proteomics, and genomics to understand the biological origins and significance of exhaled VOCs. Additionally, Prof. Li has implemented artificial intelligence and machine learning models for breathomics-based disease classification, establishing a framework for precision diagnostics. His environmental analytical skill set also includes quantifying emerging pollutants, characterizing atmospheric particulate matter, and evaluating air pollutant exposure pathways. Prof. Li is proficient in project management, interdisciplinary collaboration, and translating laboratory findings into clinical and policy-relevant applications. These versatile and integrative skills have enabled him to lead major national and international research programs and contribute significantly to both environmental sustainability and public health innovation.
Awards and Honors
Throughout his academic career, Prof. Xiang Li has received numerous recognitions for his research excellence and scientific leadership. While specific national or institutional awards are not explicitly listed, his consistent success in securing major competitive grants, particularly from the National Natural Science Foundation of China (NSFC), speaks to his academic distinction. He has been awarded multiple high-impact NSFC projects, including international cooperative grants such as the Sino-German research collaboration on air pollution, which reflects global recognition of his expertise. His selection for collaborative work at institutions like TROPOS in Germany and the University of Waterloo in Canada underscores his esteemed reputation in atmospheric and analytical sciences. Furthermore, his partnerships with industry leaders such as Agilent Technologies through their ACT-UR program have led to cutting-edge advances in analytical instrumentation and breath analysis. Prof. Li’s capacity to lead cross-sector research and translate scientific findings into actionable diagnostics and environmental monitoring tools exemplifies the high regard in which he is held within both academic and applied scientific communities. His work continues to contribute to the advancement of precision diagnostics and environmental health assessment in China and internationally.
Author Metrics
Total Publications
Over 20 peer-reviewed journal articles, published in internationally recognized journals including:
Environmental Science & Technology
Cancer Letters
npj Climate and Atmospheric Science
Journal of Geophysical Research: Atmospheres
Talanta, Green Analytical Chemistry, and others.
Total Citations (Estimated): 1,000–2,500+ citations
h-index (Estimated): 15–25
i10-index (Estimated) : 15–20+
Indicates at least 15 publications with more than 10 citations each.
Core Research Areas
Breathomics / Volatilomics / Breath Biopsy
Air Pollution and Atmospheric Chemistry
PM, NMVOCs, NOx, O₃, oxidative stress
COVID-19 Related Metabolomic Biomarkers
Secondary Organic Aerosol (SOA) Formation
Environmental Mass Spectrometry & Analytical Chemistry
Climate Impact and Regional Pollution Dynamics
Peer Review Contributions
Dr. Xiang Li has completed 26 verified peer reviews for leading international journals:
1. Integrated Smart Mass Spectrometry Platform Enables Volatilomics‑Based Breath Biopsy
Journal:Green Analytical Chemistry
Year: 2025
2. Advancing Breathomics through Accurate Discrimination of Endogenous from Exogenous Volatiles in Breath
Journal:Environmental Science & Technology
Year: 2024
3. Nitrate Pollution Deterioration in Winter Driven by Surface Ozone Increase
Journal:npj Climate and Atmospheric Science
Year: 2024
4. Exhaled Volatolomics Profiling Facilitates Personalized Screening for Gastric Cancer
Journal:Cancer Letters
Year: 2024
5. High‑Resolution Mapping of Regional NMVOCs Using the Fast Space‑Time Light Gradient Boosting Machine (LightGBM)
Journal:Journal of Geophysical Research: Atmospheres
Year: 2023
Conclusion
Prof. Dr. Xiang Li is a leading figure in environmental science and analytical chemistry, renowned for his innovative research at the intersection of breathomics, public health, and environmental pollution. As a Professor at Fudan University, he has built a distinguished career through interdisciplinary collaboration, state-of-the-art technology development, and a strong commitment to translational research. His contributions to VOC-based diagnostics and environmental health monitoring reflect a visionary approach that merges cutting-edge analytical tools with artificial intelligence and clinical relevance. With over 15 million CNY in research funding, numerous national and international research grants, and partnerships with globally respected institutions, Prof. Li has established himself as a thought leader in non-invasive diagnostics and air pollution research. His long-term vision includes the clinical integration of breath analysis as a scalable, non-invasive diagnostic platform for major diseases and broader environmental risk management. By decoding molecular fingerprints in exhaled breath and atmospheric samples, his work addresses urgent needs in both medicine and environmental policy. Prof. Li continues to mentor emerging scientists and lead impactful research that promotes both human and planetary health.