Elena Allegritti | Sustainable Materials | Best Researcher Award

Dr. Elena Allegritti | Sustainable Materials | Best Researcher Award

Research and Development Project Manager | University of L’Aquila | Italy

Dr. Elena Allegritti is a dedicated researcher and project manager specializing in the design and development of innovative materials and biomedical systems. Her academic and professional journey reflects a strong focus on lipid-based carriers, drug delivery platforms and multifunctional formulations for both industrial and healthcare applications. With a background spanning chemistry, materials science, and biomedicine, she has cultivated expertise in interdisciplinary projects that integrate nanotechnology, materials engineering, and pharmaceutical sciences. Throughout her career, Dr. Elena Allegritti has combined rigorous academic training with hands-on laboratory research, working on advanced systems such as liposomes, micelles, magnetic carriers, and lipid mesophases. Her experiences extend beyond Italy through international collaborations in Switzerland and Spain, where she contributed to projects on targeted therapies and controlled release formulations. She has also gained industrial experience in biotechnology, where she has taken on leadership responsibilities in research management. Beyond technical expertise, Dr. Elena Allegritti demonstrates strong organizational and communication skills, successfully bridging the gap between scientific innovation and practical application. Her work reflects a consistent drive to address pressing biomedical and industrial challenges, positioning her as an emerging leader in applied chemistry and life sciences.

Publication Profile

Scopus

Orcid

Education

Dr. Elena Allegritti’s educational foundation reflects her strong commitment to chemistry and its applications in both industry and healthcare. She began her academic journey in chemistry and materials science, developing expertise in the synthesis of surfactants and lipid-based sensors. Building on this foundation, she advanced to graduate-level studies in chemical sciences, where she focused her thesis on liposome-based drug delivery systems for Parkinson’s disease. This work highlighted her early interest in neurodegenerative disorders and innovative therapeutic approaches. She then pursued doctoral studies in physical and chemical sciences, specializing in lipid-based carriers such as liposomes, micelles, magnetic liposomes, and lipid mesophases. Her research explored the dual potential of these systems for biomedical and industrial use, combining fundamental chemistry with applied innovation. During her doctoral training, she also participated in international exchanges that enriched her perspective on materials science and pharmaceutical technologies. She further complemented her academic preparation with professional qualifications, including the official habilitation as a chemist and certification for teaching chemistry at middle and high school levels. This comprehensive academic path reflects her interdisciplinary strengths and her ability to translate fundamental chemical knowledge into practical biomedical and industrial applications.

Professional Experience

Dr. Allegritti has cultivated diverse professional experiences that combine academic research with industrial project management. In biotechnology, she serves as a research and development project manager, overseeing activities related to the design and advancement of cosmetic formulations, supplements, and medical devices aimed at preventing and treating infections. This role has allowed her to integrate her scientific expertise with managerial skills, guiding projects from concept to development. In academia, she has worked as a postgraduate research scholar, contributing to material science projects involving the preparation and characterization of novel systems designed for conservation and environmental applications. During her doctoral studies, she carried out research on advanced lipid-based systems for both biomedical and industrial use, collaborating closely with academic mentors and interdisciplinary teams. Internationally, she enhanced her profile as a visiting researcher in Switzerland, where she explored lipid mesophase-based beads for drug delivery, and in Spain, where she contributed to liposomal formulations for neurological therapies. Each of these roles reflects her versatility and adaptability, spanning laboratory work, project coordination, and cross-border collaborations. Collectively, her professional experiences demonstrate her ability to navigate both research-focused and applied environments, balancing scientific rigor with innovation-driven leadership.

Research Interest

Dr. Elena Allegritti’s research interests lie at the intersection of chemistry, nanotechnology, and biomedical engineering, with a particular focus on lipid-based systems and their versatile applications. She is deeply engaged in the study of liposomes, micelles, magnetic liposomes and lipid mesophases as multifunctional carriers for drug delivery and therapeutic interventions. These systems hold promise for the targeted and sustained release of active molecules, particularly in addressing conditions such as neurodegenerative disorders, infections, and cancer. Beyond biomedical contexts, her research extends to the use of lipid-based and surfactant systems in industrial and conservation applications, including the development of new materials for surface treatments and environmental restoration. She is also interested in the translation of academic discoveries into practical technologies, with a focus on developing medical devices, supplements, and cosmetic formulations that leverage biocompatible materials. Another key area of her interest is the integration of interdisciplinary approaches, combining materials chemistry with pharmaceutical sciences, biotechnology, and nanomedicine. Through both independent and collaborative projects, Dr. Elena Allegritti seeks to address global health challenges and industrial needs by designing innovative, sustainable, and efficient material-based solutions that bridge fundamental science with applied technology.

Research Skills

Dr. Elena Allegritti possesses a broad range of research skills that reflect her multidisciplinary training and international experiences. Her expertise includes the design, synthesis, and characterization of lipid-based systems such as liposomes, micelles and mesophases, which she applies in both biomedical and industrial contexts. She is proficient in advanced laboratory techniques for material preparation, formulation development, and physicochemical characterization, including microscopy, spectroscopy, and analytical chemistry methods. Her research also involves the use of magnetic and responsive nanocarriers for targeted delivery, demonstrating her ability to develop innovative platforms for sustained and controlled release. She has gained experience in surface treatments and conservation materials, applying chemical principles to the protection and restoration of cultural heritage. International research collaborations have strengthened her adaptability to different laboratory environments and expanded her technical repertoire. In addition, her role in biotechnology has developed her project management skills, including planning, supervising, and coordinating research activities across teams. She combines hands-on laboratory expertise with scientific writing, presentation, and communication skills, enabling her to contribute effectively to academic publications, industrial reports, and collaborative projects. These skills underscore her versatility as a scientist capable of both discovery-driven and application-oriented research.

Awards and Honors

Dr. Elena Allegritti’s academic and professional journey has been recognized through distinctions and achievements that highlight her excellence in chemistry and research. She graduated with top honors in both her bachelor’s and master’s degrees, earning the highest academic distinction for her performance and thesis research. Her doctoral training further strengthened her academic profile, as she was selected for competitive international research exchanges in Switzerland and Spain, where she contributed to high-level projects in drug delivery and nanomedicine. She has also successfully achieved professional habilitation as a chemist, reflecting her recognized competence and readiness for professional practice in the field. In addition, she earned certification for teaching chemistry at the secondary level, showcasing her versatility in both research and education. Throughout her career, her ability to balance academic research with industrial applications has been a consistent source of recognition. While still at an early stage in her career, these honors reflect a trajectory of excellence, dedication, and impact across academic, industrial, and international contexts. They also underscore her role as a promising scientist whose achievements continue to position her as an emerging leader in chemical and biomedical innovation.

Author Metrics

  • Publications: 8

  • Documents Indexed: 7

  • Total Citations: 32+

  • Citations by Documents: 30

  • h-index: 3

Publications Top Notes

1. Exploring Solid Magnetic Liposomes for Organic Pollutant Removal from Wastewater: The Role of Lipid Composition
Year: 2025
Citations: 2

2. Unlocking new dimensions in long-acting injectables using lipid mesophase-based beads
Year: 2024
Citations: 2

3. Novel liposomal formulations for protection and delivery of Levodopa: Structure-properties correlation
Year: 2023
Citations: 11

4. Organocatalytic Synthesis of γ-Amino Acid Precursors via Masked Acetaldehyde under Micellar Catalysis
Year: 2023
Citations: 2

5. Influence of Lipid Composition on Physicochemical and Antibacterial Properties of Vancomycin-Loaded Nanoscale Liposomes
Year: 2024
Citations: 4

Conclusion

Dr. Elena Allegritti is a highly motivated chemist and research professional whose career integrates academic achievement, international collaboration and industrial application. Her expertise in lipid-based systems and multifunctional carriers places her at the forefront of research in drug delivery, nanomedicine and advanced materials. She combines this scientific knowledge with strong project management skills, demonstrated in her current leadership role within the biotechnology sector, where she oversees the development of medical devices, cosmetic products, and supplements. Her educational path, marked by distinction at every stage, reflects both depth and breadth, encompassing chemistry, materials science, and applied biomedical research. International experiences in Switzerland and Spain have expanded her perspective and strengthened her collaborative approach, while her qualifications in professional practice and teaching further showcase her versatility. Looking forward, Dr. Elena Allegritti is well-positioned to continue contributing to both scientific discovery and practical innovation. Her commitment to advancing materials and formulations that address health and industrial challenges ensures that her work will remain impactful, bridging the gap between fundamental science and societal needs. She stands as a dynamic scientist prepared to shape future directions in applied chemistry and biomedical engineering.

Xinqian Shu | Environmental | Best Researcher Award

Prof. Dr. Xinqian Shu | Environmental | Best Researcher Award

Professor at China University of Mining and Technology-Beijing, China.

Prof. Dr. Xinqian Shu is a leading expert in the fields of clean energy, solid waste treatment, and resource recycling, with decades of dedication to advancing sustainable technologies in China. He has served as the Director of the Institute of Clean Energy and Environmental Engineering at China University of Mining and Technology (Beijing), where he also acts as a doctoral supervisor. Prof. Shu has led over 50 major research projects funded by national and provincial bodies, including the National Key R&D Program of China, the National Natural Science Foundation of China, and strategic scientific programs across Shaanxi, Shanxi, and Xinjiang provinces. In collaboration with major enterprises such as China Coal Energy Group, China Huaneng Group, and Jinergy Holding Group, he has contributed significantly to energy efficiency and environmental protection. Prof. Shu’s academic impact is reflected in over 260 peer-reviewed publications and more than 40 granted invention patents in China and the United States. He has authored three books and received eight prestigious awards from regional governments and the China Coal Industry. His professional affiliations include council memberships in thermal physics, solid waste, and mineral resource utilization. Prof. Shu continues to influence national science and environmental policy through his expert advisory roles.

📝Publication Profile

Scopus

Orcid

Google Scholar

🎓Education

Prof. Dr. Xinqian Shu pursued his higher education in engineering and environmental sciences in China, laying a strong academic foundation that supports his expertise in clean energy and waste recycling. He completed his undergraduate, postgraduate, and doctoral studies in institutions renowned for their focus on mining, energy, and environmental engineering, culminating in a Ph.D. in Environmental or Energy-related Engineering (exact university and degree titles are not explicitly stated in the source and would need to be specified). Throughout his academic journey, Prof. Shu developed strong competencies in thermodynamics, resource recovery, solid waste treatment, and the integration of energy systems with environmental protection. His advanced training has enabled him to supervise numerous doctoral students and research fellows, fostering a new generation of scientists and engineers. His academic background continues to underpin his leadership in large-scale national and industrial research projects. Prof. Shu’s education not only provided him with technical expertise but also instilled a deep commitment to sustainable development and innovation in energy and environmental sectors. His educational credentials have positioned him as a national figure in scientific policy advising and technological development.

💼Professional Experience

Prof. Dr. Xinqian Shu has held several influential academic and administrative positions, most notably serving as the Director of the Institute of Clean Energy and Environmental Engineering at China University of Mining and Technology (Beijing). In this role, he has overseen the development and implementation of research initiatives focused on resource recycling and environmental technology. He has acted as principal investigator for over 50 high-profile projects, including those under China’s National Key Research and Development Program, regional science and technology special initiatives in Shaanxi, Shanxi, and Xinjiang, and collaborations with leading energy and industrial corporations. Prof. Shu has been appointed to advisory and expert review roles for several national scientific and environmental agencies. He serves as a council member of both the Beijing Society of Thermal Physics and Engineering and the Organic Solid Waste Committee of the Society of China Nonferrous Metals. Additionally, he is a member of the Academic Committee for the Ministry of Natural Resources’ Key Laboratory of Coal Resource Exploration. His strategic involvement in the Second Batch of Ecological Environmental Protection-Oriented Development (EOD) Model Pilot Projects reflects his pivotal role in shaping China’s environmental protection policies and technologies.

🔬Research Interest

Prof. Dr. Xinqian Shu’s research interests span a broad yet interrelated set of disciplines within clean energy and environmental science. His core focus areas include solid waste treatment and resource recycling, energy utilization, and pollution control, particularly from coal and organic solid waste. He is also deeply engaged in the comprehensive utilization of non-metallic mineral resources, targeting industrial waste conversion into usable products and renewable energy. His work integrates fundamental research with applied engineering to address some of China’s most pressing environmental challenges. Through his exploration of ecological treatment methods and circular economy frameworks, Prof. Shu aims to enhance energy efficiency and reduce environmental impact. His projects often emphasize the valorization of industrial by-products, development of clean combustion technologies, and low-emission utilization of fossil and alternative fuels. This multidisciplinary approach positions Prof. Shu at the nexus of scientific innovation, policy impact, and industrial application. His research directly contributes to national priorities in sustainable development, pollution reduction, and green technology advancement.

🧠Research Skills

Prof. Dr. Xinqian Shu possesses advanced research skills that bridge fundamental science with industrial application. He specializes in the design and optimization of technologies for the treatment of solid waste, recovery of resources from industrial by-products, and the enhancement of clean energy systems. His methodological expertise includes thermal process modeling, pilot-scale system development, lifecycle analysis, and environmental impact assessment. Prof. Shu is adept at managing large-scale, multidisciplinary research teams and coordinating multi-stakeholder projects across academia, industry, and government agencies. He is also skilled in translating laboratory-scale innovations into practical technologies deployed in coal-based and renewable energy sectors. His ability to integrate policy, environmental engineering, and industrial technology makes him a national leader in applied clean energy research. Prof. Shu’s experience extends to patent writing and technology transfer, demonstrated by his portfolio of over 40 China and US invention patents. His proficiency in both theoretical and applied research supports his continued contributions to national innovation systems and environmental sustainability.

🏆Awards and Honors

Prof. Dr. Xinqian Shu has received multiple prestigious awards in recognition of his scientific excellence and impactful contributions to energy and environmental engineering. He has been honored with eight awards from various provincial and national institutions, including the Beijing Municipality, Shaanxi Province, and Shanxi Province, as well as the China Coal Industry Science and Technology Progress Award. These accolades underscore his role in advancing technological solutions to some of China’s most critical challenges in energy and waste management. His leadership in projects under the National Key R&D Program and his involvement in the Ministry of Ecology and Environment’s EOD Model Pilot Projects have further established him as an expert advisor and innovator. Prof. Shu’s achievements are also evident in his intellectual property portfolio, which includes over 40 patents granted in both China and the United States. His recognition is not only a testament to his scientific acumen but also reflects the societal and industrial relevance of his work in sustainable development and ecological protection.

📈Author Metrics

  • Total Citations: 2,331

  • Citations by Documents: 1,745

  • Total Publications: 136

  • h-index: 27

These metrics reflect Prof. Dr. Shu’s impactful and consistent contributions to the academic and scientific community, demonstrating both productivity and influence in his field.

📌Publications Top Notes

1. Lignocellulose hydrothermal artificial humic acid production: Reaction parameters screening and investigation of model/real feedstock

  • Authors: Changzhi Song; Libo Zhang; Jianing Wang; Xinyu Yu; Yepeng Xiao; Lihua Cheng; Xinqian Shu

  • Journal: Journal of Analytical and Applied Pyrolysis

  • Year: 2024

  • Citations: 7

2. Mechanism study on the generation of oxygen vacancies by ball milling surface modification of siliceous minerals in coal gangue to enhance reactivity

  • Authors: Huixin Zhou, Dingxun Ma, Lingwen Dai, Yichao Wang, Xiaoling Ren, Xiaozhen Liu, Xumin Li, Haijiao Xie, Xinqian Shu

  • Journal: Applied Surface Science

  • Year: 2025

  • Citations: 4

3. Competitive Adsorption of Pb²⁺ from Aqueous Solutions by Multi-Source Lignocellulose-Derived Hydrothermal Humic Acid

  • Authors: Changzhi Song, Junhao Liu, Libo Zhang, Jianing Wang, Xinqian Shu

  • Journal: Processes

  • Year: 2025

  • Citations: 3

4. Machine learning constructs the microstructure and mechanical properties that accelerate the development of CFRP pyrolysis for carbon-fiber recycling

  • Authors: Lingwen Dai, Xiaomin Hu, Congcong Zhao, Huixin Zhou, Zhiji Zhang, Yichao Wang, Shuai Ma, Xiaozhen Liu, Xumin Li, Xinqian Shu

  • Journal: Waste Management

  • Year: 2024

  • Citations: 2

5. Physicochemical, kinetic, and bond-energy analyses of the pyrolysis of carbon-fiber-reinforced polymer waste

  • Authors: Lingwen Dai, Xiaomin Hu, Huixin Zhou, Xiaozhen liu, Yuchen Wu, Liru Sun, Xinqian Shu

  • Journal: Journal of Analytical and Applied Pyrolysis

  • Year: 2025

  • Citations: 1

🧾Conclusion

Prof. Dr. Xinqian Shu stands out as a visionary scientist and educator in the fields of energy efficiency, environmental engineering, and solid waste utilization. With a prolific research career, he has shaped national and regional strategies for clean energy deployment and industrial sustainability. His leadership at China University of Mining and Technology (Beijing), combined with his coordination of over 50 major projects, underscores his capacity to bridge research, policy, and industry. Prof. Shu’s academic output, including over 260 publications, three monographs, and numerous patents, demonstrates his commitment to innovation and practical impact. His awards and professional memberships reflect recognition from the scientific community and government bodies alike. As a scholar, mentor, and strategic advisor, Prof. Shu continues to influence environmental policy, technological advancement, and sustainable practices across China. His contributions have laid a robust foundation for the next generation of researchers and continue to drive progress toward a circular economy and ecological civilization.