Uma S | Environmental Pollution and Remediation | Best Researcher Award

Dr. Uma S | Environmental Pollution and Remediation | Best Researcher Award

Guest Teacher | The Gandhigram Rural Institute-Deemed to be University (DTBU) | India

Dr. Uma S is an accomplished environmental engineer and researcher specializing in sustainable environmental technologies, anaerobic digestion, and wastewater treatment. Her research has significantly advanced solid-state anaerobic co-digestion processes and biogas production from organic substrates. With a strong interdisciplinary foundation, she integrates mathematical modeling, life cycle analysis, and phytoremediation to address complex environmental challenges. Her work on optimizing Sequential Batch Reactor (SBR) systems for nitrogen removal demonstrates practical innovation in wastewater management. She has authored peer-reviewed papers in Waste and Biomass Valorization, Arabian Journal for Science and Engineering, Process Integration and Optimization for Sustainability, and Annals of Agricultural & Crop Sciences, contributing to both SCIE and Scopus-indexed literature. Dr. Uma S has also published a specialized book titled Heavy Metal Adsorption Using Nanocomposites for Wastewater Treatment (ISBN: 978-981-96-0755-6), reflecting her expertise in nanocomposite applications for environmental remediation. Her research output, with 36 citations, 4 Scopus-indexed publications, and an h-index of 3, is complemented by a patented innovation—AIB-Bottle, an AI-based water filter bottle (Application No. 201941035054)—highlighting her focus on translational and applied sustainability technologies. She has collaborated with leading institutions such as NIT Karnataka, NIT Tiruchirappalli, Delta State University (Nigeria), and Kumamoto University (Japan), fostering international research synergy. Dr. Uma S’s contributions extend to mentoring postgraduate research in renewable energy, WEEE (Waste Electrical and Electronic Equipment) management, and smart materials for infrastructure diagnostics. Recognized with the Best Reviewer Award (2015) by the Journal of Environmental Chemical Engineering, she actively contributes to the global scientific community through editorial and peer-review service. Her research endeavors continue to enhance sustainable resource management and environmental resilience through innovative, eco-efficient engineering solutions.

Profiles: Scopus | ORCID | Google Scholar | Web of Science | Academia

Featured Publications

1. Uma, S., Thalla, A. K., & Devatha, C. P. (2020). Co-digestion of food waste and switchgrass for biogas potential: Effects of process parameters. Waste and Biomass Valorization, 11(3), 827–839.

2. Owamah, H. I., Ikpeseni, S. C., Dharmaraj, R., Gopikumar, S., Malathy, R., Uma, S., … (2021). Influence of diethanolamine on the properties of concrete, corrosion rate of rebar and renewable energy generation. Arabian Journal for Science and Engineering, 46(11), 11487–11496.

3. Sakthivel, U., Swaminathan, G., & Anis, J. (2022). Strategies for quantifying metal recovery from waste electrical and electronic equipment (WEEE/E-waste) using mathematical approach. Process Integration and Optimization for Sustainability, 6, 781–790.

4. Uma, S., Thalla, A. K., & Jayanthi, S. (2015). Performance evaluation on anaerobic digestion of banana waste along with domestic wastewater. In National Conference on Technological Innovations for Sustainable Development.

5. Uma, S. (2019). Solid-state anaerobic co-digestion of organic substrates for biogas production [Master’s thesis, National Institute of Technology Karnataka, Surathkal].

Mriganka Shekhar Sarkar | Environmental Conservation and Sustainability | Best Researcher Award

Dr. Mriganka Shekhar Sarkar | Environmental Conservation and Sustainability | Best Researcher Award

Scientist – C | G.B. Pant National Institute of Himalayan Environment | India

Dr. Mriganka Shekhar Sarkar is an accomplished wildlife biologist and conservation ecologist currently serving as Scientist–C at the G.B. Pant National Institute of Himalayan Environment, India. His research focuses on landscape ecology, population genetics, conservation biology, and climate change impacts on biodiversity across the Indian Himalayan Region. With over 26 peer-reviewed research publications, 3 authored books, 6 book chapters, and multiple technical reports, his scientific contributions span reintroduction biology, large carnivore ecology, habitat connectivity modeling, and macro-ecological assessments using advanced geospatial and statistical approaches. Dr. Mriganka Shekhar Sarkar’s interdisciplinary work integrates molecular ecology, spatial statistics, and remote sensing to address conservation challenges for flagship species such as the tiger (Panthera tigris), common leopard (Panthera pardus), and red panda (Ailurus fulgens). His pioneering studies in PeerJ, Landscape Ecology, PLoS ONE, European Journal of Wildlife Research, and Global Ecology and Conservation have significantly advanced understanding of habitat fragmentation, dispersal corridors, and reintroduced species viability. He has successfully completed and led more than ten national and international R&D and funding projects, including those supported by the Ministry of Environment, Forest and Climate Change (MoEFCC), ICIMOD, SBI Foundation, and DST–SERB. His ongoing projects address ecosystem resilience, biodiversity mainstreaming, and climate vulnerability across the Himalayas. Dr. Mriganka Shekhar Sarkar has earned 26 documents, 403 Scopus citations, an h-index of 12, and numerous recognitions including the Research Excellence Award (2020) and the prestigious Max Planck–India Mobility Fellowship (2022–2025). He also serves as Editorial Advisor for Cambridge Scholars Publishing (UK) and reviewer for several international journals. His scientific leadership, innovative modeling approaches, and conservation-driven fieldwork continue to shape biodiversity management and sustainability strategies in fragile mountain ecosystems.

Profiles: Scopus | ORCID | Google Scholar | ResearchGate | Sci Profiles | Scholar GPS | Academia

Featured Publications

1. Krishnamurthy, R., Cushman, S. A., Sarkar, M. S., Malviya, M., Naveen, M., et al. (2016). Multi-scale prediction of landscape resistance for tiger dispersal in central India. Landscape Ecology, 31(6), 1355–1368.

2. Sarkar, M. S., Ramesh, K., Johnson, J. A., Sen, S., Nigam, P., Gupta, S. K., et al. (2016). Movement and home range characteristics of reintroduced tiger (Panthera tigris) population in Panna Tiger Reserve, central India. European Journal of Wildlife Research, 62(5), 537–547.

3. Gour, D. S., Bhagavatula, J., Bhavanishankar, M., Reddy, P. A., Gupta, J. A., et al. (2013). Philopatry and dispersal patterns in tiger (Panthera tigris). PLOS ONE, 8(7), e66956.

4. Reddy, P. A., Cushman, S. A., Srivastava, A., Sarkar, M. S., & Shivaji, S. (2017). Tiger abundance and gene flow in Central India are driven by disparate combinations of topography and land cover. Diversity and Distributions, 23(8), 863–874.

5. Chaudhary, A., Sarkar, M. S., Adhikari, B. S., & Rawat, G. S. (2021). Ageratina adenophora and Lantana camara in Kailash Sacred Landscape, India: Current distribution and future climatic scenarios through modeling. PLOS ONE, 16(5), e0239690.

Zhong Zhang | Environmental Sciences | Best Researcher Award

Prof. Zhong Zhang | Environmental Sciences | Best Researcher Award

Vice President, Shandong Second Medical University, China

Prof. Zhong Zhang is the Vice President of Shandong Second Medical University, where he also serves as a senior academic leader in the fields of pathogen biology, parasitology, microbiology and environmental sciences. He holds a Ph.D. in Pathogen Biology, obtained from a leading Chinese university, with specialization in microbial ecology and host–pathogen interactions. His research primarily focuses on the ecological and molecular interactions between pathogenic microorganisms, insects, and environmental factors, particularly exploring how intestinal commensal bacteria and bacteriophages influence the gut microbiota and developmental biology of insects. Prof. Zhong Zhang’s recent work has introduced novel phage-based precision regulation strategies to modify the gut microbiome of housefly larvae, revealing key mechanisms that link microbial balance to host growth and health. He has also pioneered investigations into the effects of graphene on bacterium–phage interactions in aquatic ecosystems and used multi-omics biological approaches to uncover how antibiotics reshape microbial and transcriptomic landscapes during larval development. Throughout his career, Prof. Zhong Zhang has held influential academic and research roles, including Principal Expert for the Shandong Province “12th Five-Year Plan” Key Discipline in Pathogen Biology, where he led several national and provincial-level research projects advancing environmental microbiology and vector-borne disease control. His scholarly impact includes 64 peer-reviewed publications, 722 citations, and an h-index of 16 (Scopus), reflecting sustained contributions to his field. Recognized for his excellence, he received the First Prize of the Shandong Higher Education Institutions Outstanding Research Achievement Award and the title of “Shandong Provincial Young and Middle-aged Expert with Outstanding Contributions.” He actively contributes to the scientific community as Vice President of the Shandong Entomological Society, Vice Chair of the Urban Entomology Committee and Medical Parasitology Branch, and Chair of the Medical Entomology Committee under the Entomological Society of China. Prof. Zhong Zhang’s interdisciplinary research bridges microbiology, entomology, and environmental science, offering innovative insights into sustainable pest management, microbial ecology, and environmental health. His vision is to advance global bioscience innovation by integrating microbiome research and ecological restoration to support sustainable ecosystems and public health resilience.

Profile: Scopus | ORCID | Sci Profiles

Featured Publications

1. Kong, X., Wang, S., Li, J., Li, Y., Zhang, R., & Zhang, Z. (2025). Kasugamycin and validamycin differentially inhibit housefly larval growth through gut microbiota regulation. Ecotoxicology and Environmental Safety, 279, 119098.

2. ang, L., Liu, X., Lin, S., Wang, L., Liang, J., & Zhang, Z. (2025). Parasitic plant Cistanche tubulosa shapes the bacterial community structure and functional composition of the salt-tolerant host Tamarix chinensis across different parasitic statuses. Environmental Microbiome, 20, 746.

3. Han, Y.-N., Dong, L., Sun, L.-L., Zhang, Z., & Han, H.-H. (2025). Excited-state-altering ratiometric fluorescent probes for the response of β-galactosidase in senescent cells. Molecules, 30(6), 1221.

4. Yin, Y., Wang, S., Li, Y., Kong, X., Zhang, R., & Zhang, Z. (2024). Antagonistic effect of the beneficial bacterium Enterobacter hormaechei against the heavy metal Cu²⁺ in housefly larvae. Ecotoxicology and Environmental Safety, 270, 116077.

5. Zhang, K., Wang, S., Li, Y., Yao, D., Zhang, R., & Zhang, Z. (2024). Application of bacteria and bacteriophage cocktails for biological control of houseflies. Parasites & Vectors, 17, 82.

 

Lili Wang | Environmental Conservation | Best Researcher Award

Assoc. Prof. Dr. Lili Wang | Environmental Conservation | Best Researcher Award

Associate Professor | Zhejiang Sci-tech University | China

Assoc. Prof. Dr. Lili Wang is a highly accomplished scholar and researcher specializing in textile chemistry, dyeing, and finishing engineering. Serving as an Associate Professor at Zhejiang Sci-Tech University, she has established herself as a leading figure in the development of sustainable textile technologies. Her primary research focuses on ecological dyeing methods and the functionalization of natural polymers, with an emphasis on reducing environmental impact while enhancing textile performance. Assoc. Prof. Dr. Lili Wang has successfully led and contributed to multiple nationally and provincially funded research projects, particularly in the field of digital spray dyeing technology for polyester fabrics, which is recognized for its potential in energy conservation and carbon reduction. She has further demonstrated her innovative capacity by securing numerous invention patents, reflecting her ability to translate scientific research into practical applications. Her academic training, combined with postdoctoral experience in industry, enables her to integrate theoretical research with real-world textile solutions. Beyond her technical expertise, Assoc. Prof. Dr. Lili Wang is dedicated to advancing the global textile industry toward greener, more efficient practices. Her contributions highlight the importance of bridging academia and industry, making her an influential voice in shaping the future of sustainable textile science and engineering.

Publication Profile

Scopus

Orcid

Google Scholar

Education

Assoc. Prof. Dr. Lili Wang has built a strong academic foundation through a comprehensive educational journey across some of China’s leading institutions in textiles, chemistry, and materials science. She began her studies in materials science and engineering at the undergraduate level, where she gained fundamental knowledge in textile materials, fiber science, and engineering principles. This early academic training sparked her interest in exploring the chemistry of textiles and their applications in innovative and sustainable processes. Motivated to advance her expertise, she pursued graduate studies in chemistry, chemical engineering and biotechnology, where she deepened her understanding of advanced chemical reactions, polymer science, and their relevance to textile dyeing and finishing. Her doctoral training focused on the intersection of chemistry and textile applications, equipping her with the ability to conduct independent research and develop novel approaches to textile processing. To further strengthen her research profile, Assoc. Prof. Dr. Lili Wang undertook postdoctoral research in collaboration with industry, where she explored practical solutions for ecological dyeing and finishing technologies. This unique combination of academic rigor and industrial research experience has provided her with both theoretical depth and applied skills, enabling her to contribute meaningfully to advancing sustainable textile science and engineering.

Professional Experience

Assoc. Prof. Dr. Lili Wang has cultivated a career that bridges academic research, industrial application, and innovation in textile chemistry and ecological dyeing. At Zhejiang Sci-Tech University, she serves as an Associate Professor in the College of Textiles Science and Engineering, where she is actively engaged in teaching, research, and student mentorship. Her academic role involves guiding research in textile chemistry and dyeing, supervising projects focused on sustainable textile technologies, and fostering interdisciplinary collaboration. In addition to her university work, she has gained valuable industrial experience through postdoctoral research at Saintyear Holding Group Co., Ltd., where she applied her scientific expertise to real-world challenges in ecological dyeing and finishing. This dual experience has allowed her to integrate theoretical knowledge with practical solutions, ensuring that her research directly contributes to industrial innovation. Assoc. Prof. Dr. Lili Wang has successfully led and participated in major research projects funded by national and provincial foundations, focusing on energy-saving and eco-friendly textile processes. Her achievements include an impressive record of granted invention patents, reflecting her ability to transform scientific ideas into applied technologies. Through her professional journey, she has consistently demonstrated leadership, innovation, and a strong commitment to advancing sustainable practices in the textile industry.

Research Interest

Assoc. Prof. Dr. Lili Wang’s research interests are centered on advancing sustainable technologies in textile chemistry, dyeing, and finishing. She is particularly focused on developing new ecological dyeing methods that reduce water consumption, minimize energy use, and lower the carbon footprint of textile processing. One of her major areas of interest lies in digital spray dyeing for polyester fabrics, a cutting-edge approach recognized for its efficiency and environmental benefits. In addition, she explores the functionalization of natural polymers, aiming to create textiles with enhanced properties such as durability, antibacterial performance, and eco-compatibility. By integrating renewable resources with modern textile finishing techniques, her work contributes to the development of high-value and sustainable textile products. Assoc. Prof. Dr. Lili Wang also investigates interdisciplinary applications of polymer science, chemical engineering, and environmental chemistry to address industry challenges. Her research reflects a balance between innovation and responsibility, ensuring that technological advancements align with global sustainability goals. Through her projects, she seeks to create practical solutions that can be widely applied in the textile industry, ultimately promoting greener production models and contributing to the transformation of the global textile sector toward more sustainable and environmentally friendly practices.

Research Skills

Assoc. Prof. Dr. Lili Wang has developed a comprehensive set of research skills that combine advanced chemical knowledge, materials engineering expertise, and applied textile innovation. She is highly skilled in the design and optimization of textile dyeing processes with a focus on energy efficiency, water conservation, and environmental protection. Her technical expertise includes digital spray dyeing, ecological finishing methods, and the modification of polymers to enhance textile functionality. She is proficient in applying advanced analytical methods to evaluate dyeing performance, textile durability, and eco-friendly properties of treated fabrics. Assoc. Prof. Dr. Lili Wang also has strong project management skills, having successfully led and coordinated multiple national and provincial research projects funded by prestigious scientific foundations. Her ability to translate laboratory results into scalable industrial applications is evident in her portfolio of granted patents. In addition, she demonstrates expertise in interdisciplinary collaboration, bringing together principles of chemistry, chemical engineering, and textile science to create innovative solutions. Her research skills extend to experimental design, data analysis, and innovation development, ensuring that her work not only advances theoretical knowledge but also contributes practical technologies for the textile industry. This unique combination positions her as a versatile and impactful researcher in sustainable textile science.

Awards and Honors

Assoc. Prof. Dr. Lili Wang has received recognition for her outstanding contributions to the advancement of sustainable textile technologies. Her research achievements have been supported by major national and provincial funding bodies, reflecting the scientific significance and societal value of her work. She has secured competitive grants from the National Natural Science Foundation of China, the China Postdoctoral Science Foundation, and the Zhejiang Provincial Natural Science Foundation, demonstrating her strong research leadership and innovation capacity. Beyond funding recognition, her creativity and applied research outcomes are further highlighted by her impressive record of granted invention patents. These patents stand as a testament to her ability to translate theoretical knowledge into impactful technologies that address industrial needs. Her recognition is not limited to academic circles but extends to industrial collaborations, where her research outcomes contribute directly to advancing ecological dyeing and functional finishing practices. Assoc. Prof. Dr. Lili Wang’s honors reflect her commitment to developing environmentally responsible textile processes and her vision of promoting green innovation within the industry. These achievements underscore her role as a respected researcher, innovator, and academic leader, dedicated to shaping the future of textile engineering with sustainability and scientific excellence at the forefront.

Author Metrics

  • Total Documents Published: 60+

  • Total Citations: 2,740+

  • h-index: 30

  • i10-index: 60

These metrics reflect the significant academic impact and influence of Assoc. Prof. Dr. Lili Wang’s research in textile chemistry, ecological dyeing technologies, and polymer functionalization. Her work is widely cited in international journals, demonstrating both the quality and relevance of her scientific contributions to the global research community.

Publications Top Notes

1. Urea-free reactive printing of viscose fabric with high color performance for cleaner production
Year: 2021
Citations: 15

2. A novel quaternary ammonium triethanolamine modified polyester polyether for rapid wetting and penetration pretreatment for digital inkjet dyeing of polyester fabric
Year: 2025
Citations: 6

3. Organofluorosilicon modified polyacrylate with the unidirectional migration promotion of disperse dyes toward polyester fabric for wash-Free digital inkjet dyeing
Year: 2024
Citations: 6

4. Ecofriendly and durable flame-retardant cotton fabric based on alkyl/N/B/P modified meglumine with high efficiency
Year: 2023
Citations: 12

5. Ecofriendly dual-function cotton fabric with antibacterial and anti-adhesion properties based on modified natural materials
Year: 2024
Citations: 3

Conclusion

Assoc. Prof. Dr. Lili Wang has established herself as a dynamic academic and researcher whose career reflects the integration of scientific excellence, practical innovation, and environmental responsibility. With her strong foundation in chemistry, biotechnology, and materials science, she has advanced into a leading role in textile chemistry and sustainable dyeing technologies. Her focus on ecological dyeing and functionalization of natural polymers demonstrates her commitment to addressing pressing global challenges in textile production, such as energy consumption, water conservation, and pollution reduction. Through her leadership in nationally and provincially funded projects, she has contributed innovative solutions that align academic research with industrial applications, reinforcing the importance of sustainability in modern textiles. Her impressive portfolio of invention patents further illustrates her ability to translate research outcomes into practical technologies that benefit both the industry and society. Beyond technical contributions, Assoc. Prof. Dr. Lili Wang plays a vital role as an educator and mentor, inspiring the next generation of researchers in textile science. Her career path exemplifies how academic rigor, interdisciplinary collaboration, and a vision for sustainability can converge to shape the future of textile engineering. With her expertise and dedication, Assoc. Prof. Dr. Lili Wang continues to make meaningful contributions toward building a greener and more innovative textile industry.