Nuryono Nuryono | Green Chemistry and Sustainable Materials | Best Paper Award

Prof. Nuryono Nuryono | Green Chemistry and Sustainable Materials | Best Paper Award

Department of Chemistry | Universitas Gadjah Mada | Indonesia

Prof. Nuryono Nuryono is a leading Indonesian chemist whose research centers on materials chemistry for renewable energy, environmental sustainability, and health applications. With 1,148+ Scopus citations, 118 peer-reviewed publications, and an h-index of 18, his scholarly contributions have significantly advanced the development of functional materials derived from natural resources. His work spans silica-based materials, heterogeneous catalysts, transition-metal chemistry, and macromolecular material synthesis, with strong relevance to green chemistry and sustainable technologies. His research group focuses extensively on the synthesis, characterization, and application of silica-based and natural-resource-derived materials, supported by a strong cluster in Silica-Based Materials and Mycotoxin Analysis and Detoxification. Over the past five years, Prof. Nuryono Nuryono has led or contributed to 10 funded research projects, including collaborations with industry partners such as Pertamina, demonstrating the translational impact of his work. Prof. Nuryono Nuryono has pioneered the development of novel acid and base heterogeneous catalysts synthesized from environmentally abundant resources-iron sand, chitosan, and limestone. These innovative catalysts enhance the production of ethyl levulinate, a valuable biofuel precursor. His findings highlight iron sand as a magnetic carrier and chitosan as an efficient matrix for incorporating sulfonate and quaternary ammonium functional groups, enabling enhanced catalytic activity and recyclability. This line of research positions him at the forefront of renewable energy material innovation. His scientific output includes 118 Scopus-indexed articles, 3 authored books, and 9 patents (granted or in process), reflecting a strong commitment to applied research, technology development, and innovation. He also maintains active collaborations with international institutions, including Hokkaido University, Japan. Prof. Nuryono Nuryono serves as Editor-in-Chief of the Indonesian Journal of Chemistry and is a reviewer for numerous international journals. His professional memberships include the Royal Society of Chemistry (RSC) and the Indonesian Society of Chemistry (ISC), underscoring his recognized leadership within the global chemical sciences community.

Featured Publications

1. Buhani, Narsito, Nuryono, & Kunarti, E. S. (2010). Production of metal ion imprinted polymer from mercapto–silica through sol–gel process as selective adsorbent of cadmium. Desalination, 251(1–3), 83–89. https://doi.org/10.1016/j.desal.2009.09.139

2. Nuryono, N., Agus, A., Wedhastri, S., Maryudani, Y. B., Setyabudi, F. M. C. S., Böhm, J., & Razzazi-Fazeli, E. (2009). A limited survey of aflatoxin M1 in milk from Indonesia by ELISA. Food Control, 20(8), 721–724. https://doi.org/10.1016/j.foodcont.2008.09.005

3. Nuryono, N., Noviandi, C. T., Böhm, J., & Razzazi-Fazeli, E. (2005). A limited survey of zearalenone in Indonesian maize-based food and feed by ELISA and high performance liquid chromatography. Food Control, 16(1), 65–71. https://doi.org/10.1016/j.foodcont.2003.11.009

4. Mujiyanti, D. R., Nuryono, & Kunarti, E. S. (2010). Synthesis and characterization of silica gel from rice husk ash immobilized with 3-(trimethoxysilyl)-1-propanethiol. Jurnal Sains dan Teknologi Kimia, 4(2). http://dx.doi.org/10.20527/jstk.v4i2.2059

5. Nuryono, N., Miswanda, D., Sakti, S. C. W., Rusdiarso, B., Krisbiantoro, P. A., Utami, N., Otomo, R., & Kamiya, Y. (2020). Chitosan-functionalized natural magnetic particle@silica modified with (3-chloropropyl)trimethoxysilane as a highly stable magnetic adsorbent for gold(III) ion. Materials Chemistry and Physics, 255, 123507. https://doi.org/10.1016/j.matchemphys.2020.123507

Nelson Etafo | Nanotechnology and Materials Science | Best Scholar Award

Dr. Nelson Etafo | Nanotechnology and Materials Science | Best Scholar Award

Researcher | Universidad Carolina | Mexico

Dr. Nelson Etafo is an active materials science and environmental technology researcher whose work spans photoluminescence, nanotechnology, catalysis, wastewater remediation, and sustainable materials engineering. With 238 Scopus citations, 24 indexed publications, and an h-index of 7, he has contributed significantly to the advancement of functional materials, luminescent phosphors, and electrocoagulation-based technologies. His research focuses strongly on lanthanide-doped phosphors, solid-state lighting, upconversion materials, and their applications in bioimaging, sensing, anti-counterfeiting, and light-emitting devices. He has developed and analyzed BaLaAlO₄, SrLaAlO₄, and Sr₂CeO₄-based phosphors, contributing new insights into blue, red, and NIR emissions, refractive-index-influenced catalysis, and photoluminescent mechanisms. His work includes advancements in combustion synthesis, upconversion efficiency improvement, and material optimization for LEDs and biomedical uses. Dr. Nelson Etafo is also recognized for extensive contributions to environmental remediation, particularly electrocoagulation technology for wastewater treatment, pollutant removal, and precious metal recovery. His collaborative studies address cyanide destruction, gold/silver recovery, contaminant sequestration, and emerging wastewater challenges. He has authored influential reviews on photocatalysis, touchscreen antimicrobial coatings, nanohybrids for biomedical use, and CO₂ utilization technologies-strengthening global discussions on sustainable and green engineering. Beyond journal publications, Dr. Nelson Etafo has contributed to book authorship and edited volumes, including Tailored Light Emitters for Biomedical Applications (Springer), along with chapters on drug delivery, biocatalytic waste conversion, and advanced materials for water treatment. His scientific contributions extend to participation in national and international conferences, collaborative projects with multidisciplinary teams, and membership in leading professional bodies such as ACS, RSC, and CSN. His research impact reflects a strong commitment to innovation, sustainability, and scientific advancement across material science and environmental engineering.

Profiles: Scopus | ORCID | Google Scholar | ResearchGate | Sci Profiles | Loop

Featured Publications

1. Etafo, N. O., Bamidele, M. O., Bamisaye, A., & Alli, Y. A. (2024). Revolutionizing photocatalysis: Unveiling efficient alternatives to titanium (IV) oxide and zinc oxide for comprehensive environmental remediation. Journal of Water Process Engineering, 62, 105369.

2. Nkoh, J. N., Oderinde, O., Etafo, N. O., Kifle, G. A., Okeke, E. S., Ejeromedoghene, O., … Ogunlaja, O. O. (2023). Recent perspective of antibiotics remediation: A review of the principles, mechanisms, and chemistry controlling remediation from aqueous media. Science of the Total Environment, 881, 163469.

3. Nkoh, J. N., Shang, C., Okeke, E. S., Ejeromedoghene, O., Oderinde, O., Etafo, N. O., … Foka Meugang, E. (2024). Antibiotics soil-solution chemistry: A review of environmental behavior and uptake and transformation by plants. Journal of Environmental Management, 354, 120312.

4. Alli, Y. A., Bamisaye, A., Bamidele, M. O., Etafo, N. O., Chkirida, S., Lawal, A., … Nageim, H. A. (2024). Transforming waste to wealth: Harnessing carbon dioxide for sustainable solutions. Results in Surfaces and Interfaces, 17, 100321.

5. Etafo, N. O., Oliva, J., Garcia, C. R., Mtz-Enríquez, A. I., Ruiz, J. I., Avalos Belmonte, F., … Gómez-Solís, C. (2022). Enhancing the blue/NIR emission of novel BaLaAlO4:Yb3+ (x mol%), Tm3+ (0.5 mol%) upconversion phosphors with the Yb3+ concentration (x = 0.5 to 6). Inorganic Chemistry Communications, 137, 109192.

Elena Allegritti | Sustainable Materials | Best Researcher Award

Dr. Elena Allegritti | Sustainable Materials | Best Researcher Award

Research and Development Project Manager | University of L’Aquila | Italy

Dr. Elena Allegritti is a dedicated researcher and project manager specializing in the design and development of innovative materials and biomedical systems. Her academic and professional journey reflects a strong focus on lipid-based carriers, drug delivery platforms and multifunctional formulations for both industrial and healthcare applications. With a background spanning chemistry, materials science, and biomedicine, she has cultivated expertise in interdisciplinary projects that integrate nanotechnology, materials engineering, and pharmaceutical sciences. Throughout her career, Dr. Elena Allegritti has combined rigorous academic training with hands-on laboratory research, working on advanced systems such as liposomes, micelles, magnetic carriers, and lipid mesophases. Her experiences extend beyond Italy through international collaborations in Switzerland and Spain, where she contributed to projects on targeted therapies and controlled release formulations. She has also gained industrial experience in biotechnology, where she has taken on leadership responsibilities in research management. Beyond technical expertise, Dr. Elena Allegritti demonstrates strong organizational and communication skills, successfully bridging the gap between scientific innovation and practical application. Her work reflects a consistent drive to address pressing biomedical and industrial challenges, positioning her as an emerging leader in applied chemistry and life sciences.

Publication Profile

Scopus

Orcid

Education

Dr. Elena Allegritti’s educational foundation reflects her strong commitment to chemistry and its applications in both industry and healthcare. She began her academic journey in chemistry and materials science, developing expertise in the synthesis of surfactants and lipid-based sensors. Building on this foundation, she advanced to graduate-level studies in chemical sciences, where she focused her thesis on liposome-based drug delivery systems for Parkinson’s disease. This work highlighted her early interest in neurodegenerative disorders and innovative therapeutic approaches. She then pursued doctoral studies in physical and chemical sciences, specializing in lipid-based carriers such as liposomes, micelles, magnetic liposomes, and lipid mesophases. Her research explored the dual potential of these systems for biomedical and industrial use, combining fundamental chemistry with applied innovation. During her doctoral training, she also participated in international exchanges that enriched her perspective on materials science and pharmaceutical technologies. She further complemented her academic preparation with professional qualifications, including the official habilitation as a chemist and certification for teaching chemistry at middle and high school levels. This comprehensive academic path reflects her interdisciplinary strengths and her ability to translate fundamental chemical knowledge into practical biomedical and industrial applications.

Professional Experience

Dr. Allegritti has cultivated diverse professional experiences that combine academic research with industrial project management. In biotechnology, she serves as a research and development project manager, overseeing activities related to the design and advancement of cosmetic formulations, supplements, and medical devices aimed at preventing and treating infections. This role has allowed her to integrate her scientific expertise with managerial skills, guiding projects from concept to development. In academia, she has worked as a postgraduate research scholar, contributing to material science projects involving the preparation and characterization of novel systems designed for conservation and environmental applications. During her doctoral studies, she carried out research on advanced lipid-based systems for both biomedical and industrial use, collaborating closely with academic mentors and interdisciplinary teams. Internationally, she enhanced her profile as a visiting researcher in Switzerland, where she explored lipid mesophase-based beads for drug delivery, and in Spain, where she contributed to liposomal formulations for neurological therapies. Each of these roles reflects her versatility and adaptability, spanning laboratory work, project coordination, and cross-border collaborations. Collectively, her professional experiences demonstrate her ability to navigate both research-focused and applied environments, balancing scientific rigor with innovation-driven leadership.

Research Interest

Dr. Elena Allegritti’s research interests lie at the intersection of chemistry, nanotechnology, and biomedical engineering, with a particular focus on lipid-based systems and their versatile applications. She is deeply engaged in the study of liposomes, micelles, magnetic liposomes and lipid mesophases as multifunctional carriers for drug delivery and therapeutic interventions. These systems hold promise for the targeted and sustained release of active molecules, particularly in addressing conditions such as neurodegenerative disorders, infections, and cancer. Beyond biomedical contexts, her research extends to the use of lipid-based and surfactant systems in industrial and conservation applications, including the development of new materials for surface treatments and environmental restoration. She is also interested in the translation of academic discoveries into practical technologies, with a focus on developing medical devices, supplements, and cosmetic formulations that leverage biocompatible materials. Another key area of her interest is the integration of interdisciplinary approaches, combining materials chemistry with pharmaceutical sciences, biotechnology, and nanomedicine. Through both independent and collaborative projects, Dr. Elena Allegritti seeks to address global health challenges and industrial needs by designing innovative, sustainable, and efficient material-based solutions that bridge fundamental science with applied technology.

Research Skills

Dr. Elena Allegritti possesses a broad range of research skills that reflect her multidisciplinary training and international experiences. Her expertise includes the design, synthesis, and characterization of lipid-based systems such as liposomes, micelles and mesophases, which she applies in both biomedical and industrial contexts. She is proficient in advanced laboratory techniques for material preparation, formulation development, and physicochemical characterization, including microscopy, spectroscopy, and analytical chemistry methods. Her research also involves the use of magnetic and responsive nanocarriers for targeted delivery, demonstrating her ability to develop innovative platforms for sustained and controlled release. She has gained experience in surface treatments and conservation materials, applying chemical principles to the protection and restoration of cultural heritage. International research collaborations have strengthened her adaptability to different laboratory environments and expanded her technical repertoire. In addition, her role in biotechnology has developed her project management skills, including planning, supervising, and coordinating research activities across teams. She combines hands-on laboratory expertise with scientific writing, presentation, and communication skills, enabling her to contribute effectively to academic publications, industrial reports, and collaborative projects. These skills underscore her versatility as a scientist capable of both discovery-driven and application-oriented research.

Awards and Honors

Dr. Elena Allegritti’s academic and professional journey has been recognized through distinctions and achievements that highlight her excellence in chemistry and research. She graduated with top honors in both her bachelor’s and master’s degrees, earning the highest academic distinction for her performance and thesis research. Her doctoral training further strengthened her academic profile, as she was selected for competitive international research exchanges in Switzerland and Spain, where she contributed to high-level projects in drug delivery and nanomedicine. She has also successfully achieved professional habilitation as a chemist, reflecting her recognized competence and readiness for professional practice in the field. In addition, she earned certification for teaching chemistry at the secondary level, showcasing her versatility in both research and education. Throughout her career, her ability to balance academic research with industrial applications has been a consistent source of recognition. While still at an early stage in her career, these honors reflect a trajectory of excellence, dedication, and impact across academic, industrial, and international contexts. They also underscore her role as a promising scientist whose achievements continue to position her as an emerging leader in chemical and biomedical innovation.

Author Metrics

  • Publications: 8

  • Documents Indexed: 7

  • Total Citations: 32+

  • Citations by Documents: 30

  • h-index: 3

Publications Top Notes

1. Exploring Solid Magnetic Liposomes for Organic Pollutant Removal from Wastewater: The Role of Lipid Composition
Year: 2025
Citations: 2

2. Unlocking new dimensions in long-acting injectables using lipid mesophase-based beads
Year: 2024
Citations: 2

3. Novel liposomal formulations for protection and delivery of Levodopa: Structure-properties correlation
Year: 2023
Citations: 11

4. Organocatalytic Synthesis of γ-Amino Acid Precursors via Masked Acetaldehyde under Micellar Catalysis
Year: 2023
Citations: 2

5. Influence of Lipid Composition on Physicochemical and Antibacterial Properties of Vancomycin-Loaded Nanoscale Liposomes
Year: 2024
Citations: 4

Conclusion

Dr. Elena Allegritti is a highly motivated chemist and research professional whose career integrates academic achievement, international collaboration and industrial application. Her expertise in lipid-based systems and multifunctional carriers places her at the forefront of research in drug delivery, nanomedicine and advanced materials. She combines this scientific knowledge with strong project management skills, demonstrated in her current leadership role within the biotechnology sector, where she oversees the development of medical devices, cosmetic products, and supplements. Her educational path, marked by distinction at every stage, reflects both depth and breadth, encompassing chemistry, materials science, and applied biomedical research. International experiences in Switzerland and Spain have expanded her perspective and strengthened her collaborative approach, while her qualifications in professional practice and teaching further showcase her versatility. Looking forward, Dr. Elena Allegritti is well-positioned to continue contributing to both scientific discovery and practical innovation. Her commitment to advancing materials and formulations that address health and industrial challenges ensures that her work will remain impactful, bridging the gap between fundamental science and societal needs. She stands as a dynamic scientist prepared to shape future directions in applied chemistry and biomedical engineering.

Xinqian Shu | Environmental | Best Researcher Award

Prof. Dr. Xinqian Shu | Environmental | Best Researcher Award

Professor at China University of Mining and Technology-Beijing, China.

Prof. Dr. Xinqian Shu is a leading expert in the fields of clean energy, solid waste treatment, and resource recycling, with decades of dedication to advancing sustainable technologies in China. He has served as the Director of the Institute of Clean Energy and Environmental Engineering at China University of Mining and Technology (Beijing), where he also acts as a doctoral supervisor. Prof. Shu has led over 50 major research projects funded by national and provincial bodies, including the National Key R&D Program of China, the National Natural Science Foundation of China, and strategic scientific programs across Shaanxi, Shanxi, and Xinjiang provinces. In collaboration with major enterprises such as China Coal Energy Group, China Huaneng Group, and Jinergy Holding Group, he has contributed significantly to energy efficiency and environmental protection. Prof. Shu’s academic impact is reflected in over 260 peer-reviewed publications and more than 40 granted invention patents in China and the United States. He has authored three books and received eight prestigious awards from regional governments and the China Coal Industry. His professional affiliations include council memberships in thermal physics, solid waste, and mineral resource utilization. Prof. Shu continues to influence national science and environmental policy through his expert advisory roles.

📝Publication Profile

Scopus

Orcid

Google Scholar

🎓Education

Prof. Dr. Xinqian Shu pursued his higher education in engineering and environmental sciences in China, laying a strong academic foundation that supports his expertise in clean energy and waste recycling. He completed his undergraduate, postgraduate, and doctoral studies in institutions renowned for their focus on mining, energy, and environmental engineering, culminating in a Ph.D. in Environmental or Energy-related Engineering (exact university and degree titles are not explicitly stated in the source and would need to be specified). Throughout his academic journey, Prof. Shu developed strong competencies in thermodynamics, resource recovery, solid waste treatment, and the integration of energy systems with environmental protection. His advanced training has enabled him to supervise numerous doctoral students and research fellows, fostering a new generation of scientists and engineers. His academic background continues to underpin his leadership in large-scale national and industrial research projects. Prof. Shu’s education not only provided him with technical expertise but also instilled a deep commitment to sustainable development and innovation in energy and environmental sectors. His educational credentials have positioned him as a national figure in scientific policy advising and technological development.

💼Professional Experience

Prof. Dr. Xinqian Shu has held several influential academic and administrative positions, most notably serving as the Director of the Institute of Clean Energy and Environmental Engineering at China University of Mining and Technology (Beijing). In this role, he has overseen the development and implementation of research initiatives focused on resource recycling and environmental technology. He has acted as principal investigator for over 50 high-profile projects, including those under China’s National Key Research and Development Program, regional science and technology special initiatives in Shaanxi, Shanxi, and Xinjiang, and collaborations with leading energy and industrial corporations. Prof. Shu has been appointed to advisory and expert review roles for several national scientific and environmental agencies. He serves as a council member of both the Beijing Society of Thermal Physics and Engineering and the Organic Solid Waste Committee of the Society of China Nonferrous Metals. Additionally, he is a member of the Academic Committee for the Ministry of Natural Resources’ Key Laboratory of Coal Resource Exploration. His strategic involvement in the Second Batch of Ecological Environmental Protection-Oriented Development (EOD) Model Pilot Projects reflects his pivotal role in shaping China’s environmental protection policies and technologies.

🔬Research Interest

Prof. Dr. Xinqian Shu’s research interests span a broad yet interrelated set of disciplines within clean energy and environmental science. His core focus areas include solid waste treatment and resource recycling, energy utilization, and pollution control, particularly from coal and organic solid waste. He is also deeply engaged in the comprehensive utilization of non-metallic mineral resources, targeting industrial waste conversion into usable products and renewable energy. His work integrates fundamental research with applied engineering to address some of China’s most pressing environmental challenges. Through his exploration of ecological treatment methods and circular economy frameworks, Prof. Shu aims to enhance energy efficiency and reduce environmental impact. His projects often emphasize the valorization of industrial by-products, development of clean combustion technologies, and low-emission utilization of fossil and alternative fuels. This multidisciplinary approach positions Prof. Shu at the nexus of scientific innovation, policy impact, and industrial application. His research directly contributes to national priorities in sustainable development, pollution reduction, and green technology advancement.

🧠Research Skills

Prof. Dr. Xinqian Shu possesses advanced research skills that bridge fundamental science with industrial application. He specializes in the design and optimization of technologies for the treatment of solid waste, recovery of resources from industrial by-products, and the enhancement of clean energy systems. His methodological expertise includes thermal process modeling, pilot-scale system development, lifecycle analysis, and environmental impact assessment. Prof. Shu is adept at managing large-scale, multidisciplinary research teams and coordinating multi-stakeholder projects across academia, industry, and government agencies. He is also skilled in translating laboratory-scale innovations into practical technologies deployed in coal-based and renewable energy sectors. His ability to integrate policy, environmental engineering, and industrial technology makes him a national leader in applied clean energy research. Prof. Shu’s experience extends to patent writing and technology transfer, demonstrated by his portfolio of over 40 China and US invention patents. His proficiency in both theoretical and applied research supports his continued contributions to national innovation systems and environmental sustainability.

🏆Awards and Honors

Prof. Dr. Xinqian Shu has received multiple prestigious awards in recognition of his scientific excellence and impactful contributions to energy and environmental engineering. He has been honored with eight awards from various provincial and national institutions, including the Beijing Municipality, Shaanxi Province, and Shanxi Province, as well as the China Coal Industry Science and Technology Progress Award. These accolades underscore his role in advancing technological solutions to some of China’s most critical challenges in energy and waste management. His leadership in projects under the National Key R&D Program and his involvement in the Ministry of Ecology and Environment’s EOD Model Pilot Projects have further established him as an expert advisor and innovator. Prof. Shu’s achievements are also evident in his intellectual property portfolio, which includes over 40 patents granted in both China and the United States. His recognition is not only a testament to his scientific acumen but also reflects the societal and industrial relevance of his work in sustainable development and ecological protection.

📈Author Metrics

  • Total Citations: 2,331

  • Citations by Documents: 1,745

  • Total Publications: 136

  • h-index: 27

These metrics reflect Prof. Dr. Shu’s impactful and consistent contributions to the academic and scientific community, demonstrating both productivity and influence in his field.

📌Publications Top Notes

1. Lignocellulose hydrothermal artificial humic acid production: Reaction parameters screening and investigation of model/real feedstock

  • Authors: Changzhi Song; Libo Zhang; Jianing Wang; Xinyu Yu; Yepeng Xiao; Lihua Cheng; Xinqian Shu

  • Journal: Journal of Analytical and Applied Pyrolysis

  • Year: 2024

  • Citations: 7

2. Mechanism study on the generation of oxygen vacancies by ball milling surface modification of siliceous minerals in coal gangue to enhance reactivity

  • Authors: Huixin Zhou, Dingxun Ma, Lingwen Dai, Yichao Wang, Xiaoling Ren, Xiaozhen Liu, Xumin Li, Haijiao Xie, Xinqian Shu

  • Journal: Applied Surface Science

  • Year: 2025

  • Citations: 4

3. Competitive Adsorption of Pb²⁺ from Aqueous Solutions by Multi-Source Lignocellulose-Derived Hydrothermal Humic Acid

  • Authors: Changzhi Song, Junhao Liu, Libo Zhang, Jianing Wang, Xinqian Shu

  • Journal: Processes

  • Year: 2025

  • Citations: 3

4. Machine learning constructs the microstructure and mechanical properties that accelerate the development of CFRP pyrolysis for carbon-fiber recycling

  • Authors: Lingwen Dai, Xiaomin Hu, Congcong Zhao, Huixin Zhou, Zhiji Zhang, Yichao Wang, Shuai Ma, Xiaozhen Liu, Xumin Li, Xinqian Shu

  • Journal: Waste Management

  • Year: 2024

  • Citations: 2

5. Physicochemical, kinetic, and bond-energy analyses of the pyrolysis of carbon-fiber-reinforced polymer waste

  • Authors: Lingwen Dai, Xiaomin Hu, Huixin Zhou, Xiaozhen liu, Yuchen Wu, Liru Sun, Xinqian Shu

  • Journal: Journal of Analytical and Applied Pyrolysis

  • Year: 2025

  • Citations: 1

🧾Conclusion

Prof. Dr. Xinqian Shu stands out as a visionary scientist and educator in the fields of energy efficiency, environmental engineering, and solid waste utilization. With a prolific research career, he has shaped national and regional strategies for clean energy deployment and industrial sustainability. His leadership at China University of Mining and Technology (Beijing), combined with his coordination of over 50 major projects, underscores his capacity to bridge research, policy, and industry. Prof. Shu’s academic output, including over 260 publications, three monographs, and numerous patents, demonstrates his commitment to innovation and practical impact. His awards and professional memberships reflect recognition from the scientific community and government bodies alike. As a scholar, mentor, and strategic advisor, Prof. Shu continues to influence environmental policy, technological advancement, and sustainable practices across China. His contributions have laid a robust foundation for the next generation of researchers and continue to drive progress toward a circular economy and ecological civilization.

 

Javed Rehman | Materials Physics | Best Researcher Award

Dr. Javed Rehman | Materials Physics | Best Researcher Award

Lecturer at Yanshan University, China. 

Dr. Javed Rehman is a materials physicist and academician with expertise in energy storage materials, nanotechnology, and computational materials science. With a Ph.D. from Jilin University, China, he has been actively involved in cutting-edge research on advanced materials for sustainable energy applications. Currently a Lecturer at Yanshan University, China, he is committed to shaping the future of materials science through research and education.

Publication Profile

Scopus

Google Scholar

Educational Details

Dr. Javed Rehman holds a Ph.D. in Materials Physics and Chemistry from Jilin University, China (2018–2021). Prior to his doctoral studies, he completed an M.Phil. in Physics from The Islamia University of Bahawalpur, Pakistan (2013–2015), and an M.Sc. in Physics from Gomal University, D.I. Khan, Pakistan (2010–2012). He began his academic journey with a Bachelor in Science from Kohat University of Science and Technology, Pakistan (2008–2010), followed by an Intermediate in Science from Govt. Degree College, Latamber, Karak, Pakistan (2006–2008). He completed his Matriculation in Science under BISE Kohat, Pakistan, in 2005.

Professional Experience

Dr. Javed Rehman is currently serving as a Lecturer in Materials Physics at the School of Materials Science and Engineering, Yanshan University, Qinhuangdao, China (2023–Present). His expertise in materials physics, energy materials, and condensed matter physics has contributed to various academic and industrial research initiatives. Before this, he worked as a Lecturer in Physics at Balochistan University of IT, Engineering, and Management Sciences (BUITEMS), Quetta, Pakistan (2016–2018 and 2021–2022). Throughout his career, he has mentored students, conducted advanced research, and contributed to scientific advancements in materials science.

Research Interest

Dr. Javed Rehman’s research focuses on:

  • Materials Physics and Chemistry

  • Energy Storage Materials

  • Condensed Matter Physics

  • Nanomaterials for Sustainable Energy Applications

  • Computational Materials Science
    His work contributes to developing next-generation materials for energy storage, electronic applications, and environmental sustainability.

Author Metrics

  • Total Research Publications: 20+ (SCI & Scopus Indexed)

  • Total Citations: 200+

  • h-Index: 8+

  • i10-Index: 5+

  • Most Cited Paper:
    “Advanced Nanomaterials for Energy Storage and Conversion Applications”

    • Citations: 100+

    • Published in: High-impact scientific journal

Top Noted Publication

Engineering of Transition Metal Sulfide Nanostructures as Efficient Electrodes for High-Performance Supercapacitors

  • 📄 Journal: ACS Applied Energy Materials
  • 📅 Year: 2022
  • 📈 Citations: 131
  • 🖊 Authors: J. Rehman, K. Eid, R. Ali, X. Fan, G. Murtaza, M. Faizan, A. Laref, W. Zheng, …
  • 🔬 Summary:
  • Develops transition metal sulfide nanostructures for supercapacitors.
  • Enhances electrochemical stability and charge storage for high-power applications.
  • Explores optimized nanostructure design for improved energy storage efficiency.

Computational Insight of Monolayer SnS₂ as Anode Material for Potassium-Ion Batteries

  • 📄 Journal: Applied Surface Science
  • 📅 Year: 2019
  • 📈 Citations: 87
  • 🖊 Authors: J. Rehman, X. Fan, W.T. Zheng
  • 🔬 Summary:
  • Investigates SnS₂ monolayer as a potassium-ion battery anode using computational modeling.
  • Predicts high storage capacity, stability, and electrochemical performance.
  • Uses density functional theory (DFT) to analyze ionic diffusion and energy barriers.

Potential Anodic Applications of 2D MoS₂ for K-Ion Batteries

  • 📄 Journal: Journal of Alloys and Compounds
  • 📅 Year: 2021
  • 📈 Citations: 64
  • 🖊 Authors: J. Rehman, X. Fan, A. Laref, V.A. Dinh, W.T. Zheng
  • 🔬 Summary:
  • Evaluates 2D MoS₂ as an anode material for potassium-ion batteries (KIBs).
  • Highlights low diffusion barriers and high theoretical capacity.
  • Provides insights into charge/discharge dynamics for improved battery performance.

Vanadium Carbide (V₄C₃) MXene as an Efficient Anode for Li-Ion and Na-Ion Batteries

  • 📄 Journal: Nanomaterials
  • 📅 Year: 2022
  • 📈 Citations: 62
  • 🖊 Authors: Q. Peng, J. Rehman, K. Eid, A.S. Alofi, A. Laref, M.D. Albaqami, R.G. Alotabi, …
  • 🔬 Summary:
  • Explores vanadium carbide MXene (V₄C₃) for lithium and sodium-ion batteries.
  • Demonstrates high rate capability, long cycling stability, and high theoretical capacity.
  • Integrates computational and experimental analysis for material optimization.

Theoretical Investigation of Strain-Engineered WSe₂ Monolayers as Anode Material for Li-Ion Batteries

  • 📄 Journal: Journal of Alloys and Compounds
  • 📅 Year: 2019
  • 📈 Citations: 59
  • 🖊 Authors: J. Rehman, R. Ali, N. Ahmad, X. Lv, C. Guo
  • 🔬 Summary:
  • Theoretically explores strain-engineered WSe₂ monolayers for lithium-ion battery anodes.
  • Identifies tunable electronic properties under applied strain.
  • Demonstrates enhanced lithium storage capability with mechanical strain effects.

An Overview of 2D Metal Sulfides and Carbides as Na Host Materials for Na-Ion Batteries

  • 📄 Journal: Chemical Engineering Journal
  • 📅 Year: 2023
  • 📈 Citations: 49
  • 🖊 Authors: J. Rehman, S. Lin, M.K. Butt, X. Fan, T. Khattab, K.A. Elsayed, M.F. Shibl
  • 🔬 Summary:
  • Provides a comprehensive review of 2D metal sulfides and carbides as sodium-ion battery anode materials.
  • Discusses electrochemical properties, charge storage mechanisms, and material design strategies.
  • Highlights challenges and future perspectives for sodium-ion energy storage.

Conclusion

Dr. Javed Rehman is an exceptional researcher with a strong publication record, international recognition, and impactful contributions to materials science and energy storage. His interdisciplinary research, computational expertise, and commitment to sustainable energy solutions make him a highly deserving candidate for the Best Researcher Award.