Jiajia Cai | Environmental Engineering | Best Researcher Award

Dr. Jiajia Cai | Environmental Engineering | Best Researcher Award

Lecture, Anhui University of Technology, China

Dr. Jiajia Cai is a Lecturer at the School of Energy and Environmental Engineering, Anhui University of Technology, China, where she leads research on photoelectrochemical corrosion protection, renewable energy conversion, and AI-driven materials discovery. She earned her Ph.D. in Materials Science from Northeastern University in 2016, following an M.Sc. in Analytical Chemistry (2011) and a B.Sc. in Applied Chemistry (2009), all from Northeastern University, China. Her research focuses on developing advanced photoelectrochemical materials for sustainable energy applications, including photoelectrocathodic protection (PCP) for metals, green hydrogen production via water splitting, and AI-assisted design of novel semiconductor photoanodes. Professionally, Dr. Jiajia Cai has served as a Lecturer at Anhui University of Technology since 2016, a Postdoctoral Researcher at the National University of Singapore (2019–2020) focusing on optimization of photoanode materials, and a Visiting Scholar at Tsinghua University (2024–2025) emphasizing AI applications in materials science. Her key contributions include the design and fabrication of highly efficient photoanodes using morphology engineering, heterojunction construction and cocatalyst loading strategies, bridging fundamental photoelectrochemistry with practical corrosion prevention technologies and publishing over 50 SCI-indexed papers (58 documents, 877 citations, h-index 17), along with 4 patents under publication or review. She has led multiple national and provincial research projects, including funding from the National Natural Science Foundation of China and Anhui Provincial Natural Science Foundation, as well as support from the Key Lab for Anisotropy and Texture of Materials (ATM), Ministry of Education. Dr. Jiajia Cai is an active member of the Chinese Chemical Society and collaborates with leading institutions such as Tsinghua University, National University of Singapore, and Northeastern University. Her work significantly advances sustainable energy solutions, corrosion protection, and AI-driven materials discovery, contributing to environmental engineering, industrial innovation, and global scientific knowledge. Dr. Jiajia Cai’s research excellence, leadership, and vision position her to continue making transformative contributions to renewable energy and advanced material technologies worldwide.

Profile: Scopus | ORCID | Google Scholar | ResearchGate | Sci Profiles | Scilit

Featured Publications

1. Cai, J., Zhang, Z., Zu, S., Cui, A., Li, X., Xie, Q., Mao, K., & Chen, J. (2025). Built-in electric field in BiVO₄-SnO₂ heterostructure for enhanced photoelectrochemical H₂O₂ production. Fuel, 405, 136762.

2. Zhu, S., Cai, Z., Wang, Y., Wang, J., Cai, J., Xie, Q., & Huang, Z. (2025). Enhanced photoelectrochemical cathodic protection on steel in marine environment by cascade heterojunctions. Construction and Building Materials, 493, 143255.

3. Zhu, S., Xu, F., Wang, Y., Cai, J., Xie, Q., Yang, Y., & Huang, Z. (2025). Experimental study on heat transfer characteristics of a moving single-nozzle jet impingement. ISIJ International, 65(9), 1348–1358.

4. Xie, Q., Cai, Z., Wang, Y., Cai, J., Wang, J., & Sun, S. (2025). Efficient Z-scheme of 2D ZnIn₂S₄/3D TiO₂ for enhanced photoelectrochemical cathodic protection. Journal of Environmental Chemical Engineering, 13(5), 118305.

5. Chen, Q., Zhu, S., Xin, Z., Wang, D., Cai, J., Li, H., & Ding, S. (2024). Surfactant-assisted synthesis of NiCo alloy with specific nanopore architecture as a bifunctional electrocatalyst for rechargeable zinc-air batteries. Functional Materials Letters, 17(04), 451021.

 

Dhekra Ben Amara | Environmental Science | Best Researcher Award

Dr. Dhekra Ben Amara | Environmental Science | Best Researcher Award

Associate professor, Qingdao Hengxing University of Science and Technology, China

Dr. Dhekra Ben Amara is an agricultural economist and sustainability researcher specializing in environmental science, eco-innovation, climate change and circular economy, with a strong focus on sustainable development and green growth. She earned her Engineering degree in Agricultural and Agri-Food Economics and Management from the National Agronomic Institute of Tunisia in 2010, followed by an M.Sc. in Economy of Agriculture, Agri-Food and Environment in 2013 and completed her Ph.D. in Agricultural Economics and Management at Northeast Forestry University, Harbin, China, in 2021. Her professional experience includes serving as Administrative Officer in the Internship and International Cooperation Department at ESPRIT: Private High School of Engineering and Technologies in Tunisia (2021–2022), where she promoted student engagement and international partnerships, followed by her postdoctoral fellowship at Henan University, China (2022–2025), where she focused on eco-innovation, carbon emissions, foreign investment and Africa-China cooperation in green growth and food security. In 2025, she was appointed Associate Professor at the School of Industry and City, Qingdao Hengxing University of Science and Technology, China. Her research interests center on sustainability, eco-innovation, climate change, circular economy, food security and resource and environmental management and she has actively contributed to international projects such as the China–Tunisia biomass valorization initiative promoting bio-circular green economies. Skilled in research tools such as IBM SPSS, SPSS AMOS, SmartPLS3, STATA, GeoDA and ArcMap, she demonstrates strong technical and analytical expertise. She has authored 12 Scopus-indexed publications with 245 citations and an h-index of 8, with articles published in leading journals including Journal of Cleaner Production and Environmental Science and Pollution Research. Her achievements have been recognized with the NEFU Outstanding Graduate Award (2021), a Second Prize at the NEFU International Students’ Academic Forum and an Excellence Award in the “My Story in NEFU” contest. With her international academic background, growing research impact and leadership in eco-innovation, Dr. Dhekra Ben Amara is well-positioned to advance environmental sustainability research and contribute to global solutions addressing climate change and sustainable development.

Profile: Scopus | ORCID | Google Scholar | ResearchGate | Sci Profiles | Web of Science | ACM Digital Library | LinkedIn  

Featured Publications

1. Ben Amara, D., & Chen, H. (2020). A mediation-moderation model of environmental and eco-innovation orientation for sustainable business growth. Environmental Science and Pollution Research, 27(14), 16916–16928.

2. Ben Amara, D., & Chen, H. (2022). Driving factors for eco-innovation orientation: Meeting sustainable growth in Tunisian agribusiness. International Entrepreneurship and Management Journal, 18(2), 713–732.

3. Ben Amara, D., & Qiao, J. (2023). From economic growth to inclusive green growth: How do carbon emissions, eco-innovation and international collaboration develop economic growth and tackle climate change? Journal of Cleaner Production, 425, 138986.

4. Ben Amara, D., & Chen, H. (2020). Investigating the effect of multidimensional network capability and eco-innovation orientation for sustainable performance. Clean Technologies and Environmental Policy, 22(6), 1297–1309.

5. Ben Amara, D., & Chen, H. (2021). The impact of participative decision-making on eco-innovation capability: The mediating role of motivational eco-innovation factors. Environment, Development and Sustainability, 23(5), 6966–6986.

 

Xiangjiao Yi | Environmental | Best Researcher Award

Dr. Xiangjiao Yi | Environmental | Best Researcher Award

Lecturer, Zhejiang Chinese Medical University, China

Dr. Xiangjiao Yi is a rising scholar in environmental and musculoskeletal medicine, currently serving as a Lecturer at the School of Pharmacy, Zhejiang Chinese Medical University. She earned her Ph.D. in Ethnic Medicine (Traditional Chinese Medicine, TCM) from Minzu University of China in 2020, where she was recognized as an Outstanding Graduate and received the Excellent Doctoral Dissertation Award and was jointly trained at the University of Rochester, USA, through a prestigious China Scholarship Council fellowship. Her academic journey also includes a Master’s degree in TCM from Minzu University of China (2016) and a Bachelor’s degree in TCM from Henan University of Chinese Medicine (2012). Professionally, Dr. Xiangjiao Yi has held research appointments as an Assistant Researcher at Westlake University and as a Postdoctoral Fellow at both Westlake University and Zhejiang Chinese Medical University, where she focused on the mechanisms and therapeutic efficacy of TCM in treating musculoskeletal disorders. Her research interests center on the pathogenesis, therapeutic targets and TCM-based interventions for musculoskeletal diseases caused by genetics, aging and environmental toxicants, integrating big data population analyses, GWAS, multi-omics and experimental disease models. Dr. Xiangjiao Yi is proficient in advanced research skills, including gene editing, single-cell and bulk transcriptomics, and observational data analyses, bridging computational and laboratory-based approaches. She has successfully led four competitive projects, including a National Natural Science Foundation of China (NSFC) Youth project, and participated in three additional national-level grants. Her achievements include 11 Scopus-indexed publications with 160 citations and an h-index of 7, along with multiple award-winning conference papers. Among her many honors are the ICMRS Webster Jee Young Investigator Award, the ASBMR Young Investigator Travel Grant and provincial high-level talent recognition. With her innovative methodologies, international training and leadership in multidisciplinary projects, Dr. Xiangjiao Yi demonstrates outstanding potential to advance global research in environmental health and TCM-based musculoskeletal therapeutics.

Profile: Scopus | ORCID | Google Scholar | ResearchGate | Loop | ScholarGPS

Featured Publications

1. Li, J., Yi, X., Yao, Z., Chakkalakal, J. V., Xing, L., & Boyce, B. F. (2020). TNF receptor‐associated factor 6 mediates TNFα‐induced skeletal muscle atrophy in mice during aging. Journal of Bone and Mineral Research, 35(8), 1535–1548.

2. Pan, J., Zhao, M., Yi, X., Tao, J., Li, S., Jiang, Z., Cheng, B., Yuan, H., & Zhang, F. (2022). Acellular nerve grafts supplemented with induced pluripotent stem cell-derived exosomes promote peripheral nerve reconstruction and motor function recovery. Bioactive Materials, 15, 272–287.

3. Dai, X., Yi, X., Wang, Y., Xia, W., Tao, J., Wu, J., Miao, D., & Chen, L. (2022). PQQ dietary supplementation prevents alkylating agent-induced ovarian dysfunction in mice. Frontiers in Endocrinology, 13, 781404.

4. Li, J., Yao, Z., Liu, X., Duan, R., Yi, X., Ayoub, A., Sanders, J. O., Mesfin, A., Xing, L., … [additional authors if needed]. (2023). TGFβ1+CCR5+ neutrophil subset increases in bone marrow and causes age-related osteoporosis in male mice. Nature Communications, 14(1), 159.

5. Yi, X., Tao, J., Qian, Y., Feng, F., Hu, X., Xu, T., Jin, H., Ruan, H., Zheng, H. F., & Tong, P. (2022). Morroniside ameliorates inflammatory skeletal muscle atrophy via inhibiting canonical and non-canonical NF-κB and regulating protein synthesis/degradation. Frontiers in Pharmacology, 13, 1056460.

 

Hongqing Hu | Environmental Pollution | Best Researcher Award

Prof. Dr. Hongqing Hu | Environmental Pollution | Best Researcher Award

Prof. Dr. Hongqing Hu | Environmental Pollution – Professor at Huazhong Agricultural University, China.

Prof. Dr. Hongqing Hu is a distinguished soil scientist affiliated with the College of Resource and Environment at Huazhong Agricultural University. With over three decades of academic and research experience, his career has significantly advanced the understanding of soil chemistry, fertility, mineralogy, and plant nutrition. He earned all his academic degrees—B.Agri.Sci., M.Sc., and Ph.D.—from Huazhong Agricultural University, building a robust foundation in agronomic sciences. Throughout his professional life, Prof. Hu has contributed extensively to national and international research initiatives, focusing on nutrient dynamics, heavy metal remediation, rhizosphere processes, and sustainable soil management practices. His global engagements as a visiting scientist and invited speaker span Germany, the USA, Italy, Korea, and Australia, highlighting his recognition within the scientific community. Prof. Hu has also played prominent editorial roles in several influential journals and has been a reviewer and awardee recognized for scholarly excellence in soil and environmental sciences. His work addresses both fundamental and applied aspects of soil science, including the environmental impacts of agriculture, rhizosphere chemistry, and sustainable fertilization. With a career marked by significant publications, grants, and honors, Prof. Hu continues to influence the field of agricultural and environmental sustainability through research, mentorship, and leadership.

Publication Profile

Scopus

Orcid

Educational Background

Prof. Dr. Hongqing Hu completed all his academic degrees at Huazhong Agricultural University, China, establishing a deep and continuous academic affiliation with the institution. He earned his Bachelor’s degree in Agricultural Sciences in 1988, followed by a Master of Science degree in 1991 with a focus on soil mineralogy and surface chemistry. His M.Sc. dissertation investigated the association and surface properties of clay minerals in Mufu Mountain soil, a project that laid the foundation for his later studies on mineral-soil interactions. Building upon this, he pursued and earned his Ph.D. in 1997, focusing on the effects of organic acids on phosphate adsorption-desorption in acid soils and aluminum oxides. His doctoral research provided key insights into phosphorus dynamics and soil chemical behavior under nutrient stress, contributing to improved understanding of nutrient bioavailability and soil fertility management. The academic rigor and specificity of his training have enabled him to carry out cutting-edge research on complex soil systems, both in China and abroad. His formal education, rooted in a single premier institution, reflects both academic depth and a sustained commitment to addressing pressing agricultural and environmental challenges through science.

Professional Experience

Prof. Hu has held progressive academic positions at Huazhong Agricultural University, beginning his career in 1991 as an assistant professor and lecturer, followed by an appointment as associate professor from 1999 to 2003. Since 2003, he has served as a full professor in the university’s College of Resource and Environment. His international engagements include research and visiting scientist roles in renowned institutions: the University of Napoli (Italy, 2000), the University of Western Australia (2001–2002), Chungbuk National University (Korea, 2005 & 2007), Texas A&M University (USA, 2010), and the Jülich Agrosphere Institute (Germany, 2011). These experiences have enriched his interdisciplinary outlook and fostered international collaborations in soil chemistry and environmental science. In editorial capacities, Prof. Hu has served on the boards of several prestigious journals, such as Journal of Plant Nutrition and Fertilizer, Journal of Environmental Sciences, Agricultural Sciences, and Sustainable Development. He was also the Editor-in-Chief of Journal of Agriculture, Food and Development (2015–2022). His professional trajectory demonstrates a strong blend of academic leadership, international research engagement, and editorial stewardship, reinforcing his reputation as a thought leader in soil and environmental science.

Research Interest

Prof. Hu’s research interests are deeply rooted in soil chemistry, fertility, and environmental sustainability. He specializes in soil mineralogy, rhizosphere interactions, nutrient dynamics, and pollution remediation. One of his key focuses is the behavior of phosphorus in acid soils, including adsorption-desorption processes involving phosphate rocks and organic acids. He has also explored nutrient stress at the root-soil interface, specifically addressing biochemical reactions in variable charge soils. Another major area of interest is soil contamination—particularly heavy metal pollution—and the development of chemical and biological strategies for immobilization and phytoremediation. His projects include the investigation of Bt protein interactions in transgenic crops, biochar applications, and the environmental implications of agricultural practices in regions like the Three Gorges Reservoir. More recently, he has worked on organic-mineral fertilizer integration, eutrophication control, and microbiome-assisted remediation techniques. These interdisciplinary efforts, funded by national bodies such as NSFC, MOST, MOE, and 863 programs, reflect his dedication to developing practical, science-based solutions for soil health, food safety, and environmental protection. His interest in bridging the gap between fundamental soil science and applied agricultural technologies positions him at the forefront of sustainable land use and ecological resilience research.

Research Skills

Prof. Hu possesses a wide array of advanced research skills in soil chemistry and environmental sciences. His expertise includes clay mineral analysis, soil nutrient assays, and isotope tracing techniques to study root-soil interactions under nutrient stress. He has employed surface chemistry methods to investigate adsorption phenomena, particularly involving phosphorus, organic acids, and heavy metals. He is skilled in using two-phase (PEG/Dextran) separation techniques to isolate microbial phosphorus components and has utilized modern spectroscopic tools to elucidate chemical changes in soils exposed to various environmental conditions. His methodological proficiency extends to designing field-scale experiments for soil remediation and nutrient management, as demonstrated in his work on Bt protein retention, phosphate rock activation, and organic ligand interactions. He has led complex multi-year projects requiring integration of biogeochemical data, soil microbiology, and agronomic practices. Moreover, Prof. Hu has coordinated large-scale soil surveys, including the Third Soil Survey of Dongbao District and research in the Yangtze River hydro-fluctuation zones. His capacity to combine laboratory analysis, field investigation, and statistical modeling makes him highly effective in addressing agricultural and ecological challenges through interdisciplinary approaches.

Awards and Honors

Prof. Hu’s academic and research contributions have been widely recognized through numerous awards and honors. He has consistently been acknowledged as one of the best reviewers by major scientific journals such as the Journal of Agro-Environmental Science, Chinese Journal of Applied Ecology, and Journal of Environmental Sciences, spanning the period from 2008 to 2019. In 2005, he received both the Second Prize for Natural Science from China’s Ministry of Education and the Third Prize for Natural Science from Hubei Province. Earlier accolades include the Third Prize for Scientific and Technological Improvement (Hubei Province, 2000), and the First and Third Prizes for Research Papers from the Scientific Committee of Hubei Province in 1998 and 1996, respectively. He was also awarded the Second Prize for Technological Improvement by the Educational Commission of China in 1995. These awards reflect his longstanding commitment to high-impact research and his contributions to the advancement of soil and environmental sciences in China. His record of excellence not only affirms his scientific reputation but also demonstrates a career dedicated to innovation, quality, and academic integrity.

Author Metrics

  • Total Citations: 5,014

  • Citing Documents: 4,160

  • Total Publications: 173

  • h-index: 42

These metrics reflect a high level of scientific impact and sustained academic contribution, indicating that at least 42 of your publications have been cited 42 times or more, demonstrating both productivity and influence in your field.

Top Noted Publication

1. Individual and combined inoculation of plant growth-promoting endophytic bacteria enhance Ricinus communis L. to remediate Cu/Cd polluted soil

Journal: Journal of Hazardous Materials
Publication Date: 2025
Highlights:

  • Investigates the remediation efficiency of Ricinus communis inoculated with endophytic bacteria in copper and cadmium polluted soil.

  • Demonstrates that combined inoculation significantly boosts plant biomass and metal uptake while improving soil enzyme activity.

2. Combined application of biochar and calcium superphosphate can effectively immobilize cadmium and reduce its uptake by cabbage

Journal: Agronomy
Publication Date: October 28, 2024
Highlights:

  • Evaluates the synergistic effects of biochar and calcium superphosphate (CaSSP) in cadmium-contaminated soil.

  • Finds that the amendment reduced Cd mobility and significantly limited Cd uptake by cabbage, offering a low-cost remediation strategy.

3. Comparative study on the leaching characteristics of Cd passivated in soils under continuous simulated acid rain

Journal: Sustainability
Publication Date: April 6, 2023
Highlights:

  • Compares how cadmium-stabilizing amendments behave under acid rain conditions.

  • Reveals long-term environmental stability of certain Cd-passivating agents under acidic leaching.

4. Endophytic bacteria in Ricinus communis L.: Diversity of bacterial community, plant-growth promoting traits of the isolates and its effect on Cu and Cd speciation in soil

Journal: Agronomy
Publication Date: January 23, 2023
Highlights:

  • Studies the bacterial endophyte diversity in Ricinus communis grown in metal-polluted soils.

  • Isolates show traits like phosphate solubilization, siderophore production, and influence metal bioavailability.

5. Comparative study on the fraction changes of the Cd immobilized in the soils with simulated acid rain

Type: Preprint (Research Square)
Publication Date: November 11, 2022
Highlights:

  • Focuses on the long-term stability of cadmium immobilized in soil when exposed to acid rain.

  • Concludes that different amendments alter Cd fractionation pathways differently under acidic stress.

Conclusion

Prof. Dr. Hongqing Hu stands as a leading figure in the fields of soil science and environmental sustainability. Over a career spanning more than three decades, he has made foundational and applied contributions to soil chemistry, plant nutrition, and pollution control. His global research collaborations and editorial leadership underscore his influence across scientific communities. From the behavior of phosphorus in acid soils to the remediation of heavy metal pollution using innovative soil management techniques, Prof. Hu has consistently addressed challenges that are critical for food security and environmental protection. His strong academic background, comprehensive research experience, and numerous accolades demonstrate his commitment to excellence and innovation. Through his work, he has significantly advanced the understanding of soil processes and contributed practical solutions to enhance agricultural productivity and mitigate environmental risks. Prof. Hu continues to inspire the next generation of soil scientists while shaping sustainable agricultural policies and practices. His career is a testament to the power of integrated, interdisciplinary research in solving complex ecological problems and promoting global soil health.