Nelson Etafo | Nanotechnology and Materials Science | Best Scholar Award

Dr. Nelson Etafo | Nanotechnology and Materials Science | Best Scholar Award

Researcher | Universidad Carolina | Mexico

Dr. Nelson Etafo is an active materials science and environmental technology researcher whose work spans photoluminescence, nanotechnology, catalysis, wastewater remediation, and sustainable materials engineering. With 238 Scopus citations, 24 indexed publications, and an h-index of 7, he has contributed significantly to the advancement of functional materials, luminescent phosphors, and electrocoagulation-based technologies. His research focuses strongly on lanthanide-doped phosphors, solid-state lighting, upconversion materials, and their applications in bioimaging, sensing, anti-counterfeiting, and light-emitting devices. He has developed and analyzed BaLaAlO₄, SrLaAlO₄, and Sr₂CeO₄-based phosphors, contributing new insights into blue, red, and NIR emissions, refractive-index-influenced catalysis, and photoluminescent mechanisms. His work includes advancements in combustion synthesis, upconversion efficiency improvement, and material optimization for LEDs and biomedical uses. Dr. Nelson Etafo is also recognized for extensive contributions to environmental remediation, particularly electrocoagulation technology for wastewater treatment, pollutant removal, and precious metal recovery. His collaborative studies address cyanide destruction, gold/silver recovery, contaminant sequestration, and emerging wastewater challenges. He has authored influential reviews on photocatalysis, touchscreen antimicrobial coatings, nanohybrids for biomedical use, and CO₂ utilization technologies-strengthening global discussions on sustainable and green engineering. Beyond journal publications, Dr. Nelson Etafo has contributed to book authorship and edited volumes, including Tailored Light Emitters for Biomedical Applications (Springer), along with chapters on drug delivery, biocatalytic waste conversion, and advanced materials for water treatment. His scientific contributions extend to participation in national and international conferences, collaborative projects with multidisciplinary teams, and membership in leading professional bodies such as ACS, RSC, and CSN. His research impact reflects a strong commitment to innovation, sustainability, and scientific advancement across material science and environmental engineering.

Profiles: Scopus | ORCID | Google Scholar | ResearchGate | Sci Profiles | Loop

Featured Publications

1. Etafo, N. O., Bamidele, M. O., Bamisaye, A., & Alli, Y. A. (2024). Revolutionizing photocatalysis: Unveiling efficient alternatives to titanium (IV) oxide and zinc oxide for comprehensive environmental remediation. Journal of Water Process Engineering, 62, 105369.

2. Nkoh, J. N., Oderinde, O., Etafo, N. O., Kifle, G. A., Okeke, E. S., Ejeromedoghene, O., … Ogunlaja, O. O. (2023). Recent perspective of antibiotics remediation: A review of the principles, mechanisms, and chemistry controlling remediation from aqueous media. Science of the Total Environment, 881, 163469.

3. Nkoh, J. N., Shang, C., Okeke, E. S., Ejeromedoghene, O., Oderinde, O., Etafo, N. O., … Foka Meugang, E. (2024). Antibiotics soil-solution chemistry: A review of environmental behavior and uptake and transformation by plants. Journal of Environmental Management, 354, 120312.

4. Alli, Y. A., Bamisaye, A., Bamidele, M. O., Etafo, N. O., Chkirida, S., Lawal, A., … Nageim, H. A. (2024). Transforming waste to wealth: Harnessing carbon dioxide for sustainable solutions. Results in Surfaces and Interfaces, 17, 100321.

5. Etafo, N. O., Oliva, J., Garcia, C. R., Mtz-Enríquez, A. I., Ruiz, J. I., Avalos Belmonte, F., … Gómez-Solís, C. (2022). Enhancing the blue/NIR emission of novel BaLaAlO4:Yb3+ (x mol%), Tm3+ (0.5 mol%) upconversion phosphors with the Yb3+ concentration (x = 0.5 to 6). Inorganic Chemistry Communications, 137, 109192.

Sofia Teixeira | Nanotechnology and Materials Science | Editorial Board Member

Dr. Sofia Teixeira | Nanotechnology and Materials Science | Editorial Board Member

Senior Researcher | Tyndall National Institute | Ireland

Dr. Sofia Teixeira is a nanotechnology-focused researcher whose work bridges advanced materials science, biomedical engineering, and micro/nanofabrication. Her research background centers on the design and development of nanoscale sensing platforms capable of detecting disease-associated biomolecules with high sensitivity and selectivity. Trained in nanotechnology and electrochemical sensing, she has contributed to innovations in biomedical devices, electronic materials, and diagnostic interfaces, with a strong emphasis on translational applications that support early disease detection. Her research outputs include peer-reviewed journal publications, conference communications, and technology-driven studies exploring functional nanomaterials, biomarker recognition systems, and bio-electronic interfaces. With 89 citations, 4 research documents, and an h-index of 3, her contributions reflect an emerging yet impactful presence in the fields of nanosensors, biomaterials, and applied biotechnology. She has also advanced fabrication protocols using micro- and nanofabrication techniques, contributing to improved device performance, reproducibility, and real-world applicability. Dr. Sofia Teixeira has been involved in multidisciplinary R&D efforts linked to biomedical diagnostics, electrochemical sensor optimization, and nanostructured material design. Her work frequently integrates chemical engineering, electrochemistry, and medical biotechnology, positioning her research within critical domains such as point-of-care diagnostics, biosensing technologies, and health-related nanotechnology. She has participated in collaborative research initiatives and has contributed to the scientific community through reviewer service and research dissemination activities. Her innovations in nanoscale detection platforms and biomedical materials continue to support the advancement of next-generation diagnostic technologies and applied sensor research.

Profiles: Scopus | ORCID | Google Scholar | ResearchGate | Loop 

Featured Publications

  • Azzopardi, E., Lloyd, C., Teixeira, S. R., Conlan, R. S., & Whitaker, I. S. (2016). Clinical applications of amylase: Novel perspectives. Surgery, 160(1), 26–37.

  • Teixeira, S., Burwell, G., Castaing, A., Gonzalez, D., Conlan, R. S., & Guy, O. J. (2014). Epitaxial graphene immunosensor for human chorionic gonadotropin. Sensors and Actuators B: Chemical, 190, 723–729.

  • Teixeira, S., & Sampaio, P. (2013). Food safety management system implementation and certification: Survey results. Total Quality Management & Business Excellence, 24(3–4), 275–293.

  • Teixeira, S., Conlan, R. S., Guy, O. J., & Sales, M. G. F. (2014). Label-free human chorionic gonadotropin detection at picogram levels using oriented antibodies bound to graphene screen-printed electrodes. Journal of Materials Chemistry B, 2(13), 1852–1865.

  • Berbel-Filho, W. M., Berry, N., Rodríguez-Barreto, D., Teixeira, S., … (2020). Environmental enrichment induces intergenerational behavioural and epigenetic effects on fish. Molecular Ecology.

 

Brahma Singh | Nanotechnology and Materials Science | Best Researcher Award

Dr. Brahma Singh | Nanotechnology and Materials Science | Best Researcher Award

Senior Principal Scientist | CSIR – National Botanical Research Institute (NBRI) | India

Dr. Brahma Singh is a highly cited researcher in herbal nanobiotechnology, phytochemistry, microbial metabolomics, and natural-product–based therapeutics. With Scopus 6,632+ citations, 514+ cumulative journal impact factor, h-index 41, and 88+ Scopus-indexed documents, his work significantly advances plant-derived bioactives, nanodelivery systems, and biomedical applications. His research focuses on the bio-prospection of phytochemicals, metabolomics of plants and microbes, and the development of nano-enabled herbal formulations to enhance bioavailability, anti-inflammatory potential, antimicrobial efficacy, and immunomodulatory responses. He has pioneered several innovations targeting quorum sensing, biofilm inhibition, microbial virulence, oxidative stress, cancer therapeutics, and nanobiomaterial engineering. Dr. Brahma Singh has authored numerous high-impact publications in leading journals such as Biotechnology Advances, Trends in Biotechnology, Advanced Functional Materials, ACS Applied Bio Materials, Food Chemistry, Scientific Reports, Cancer and Metastasis Reviews, and Journal of Ethnopharmacology. Many of his articles address critical biomedical challenges, including COVID-19 inflammatory pathways, diabetic wound healing, gut microbiota modulation, and lichen- or plant-derived anticancer compounds. His research findings have been widely recognized for introducing bio-inspired nanoparticles, novel glycobiotechnology approaches, and sustainable valorization of agricultural waste. He holds 13 patents spanning herbal formulations, antimicrobial gels, nanocompositions, bioavailable curcumin technologies, dental care products, wound-healing biomaterials, and nutraceutical innovations. Dr. Brahma Singh has also developed 16 herbal technologies, including anti-fungal gels, polyherbal toothpaste, antioxidant supplements, advanced sanitizers, nanocoatings, anti-acne gels, and herbal hydrogel therapies-15 of which have been successfully transferred to industry.As an active contributor to the scientific community, he has published one edited book, nine book chapters, and serves on editorial boards of reputed journals including Scientific Reports, PLoS ONE, Frontiers in Fungal Biology, and others. His research excellence has been recognized through major scientific awards and fellowships, cementing his leadership in natural product biotechnology, herbal nanomedicine, and translational phytopharmaceutical R&D.

Profiles: Scopus | ResearchGate | Loop

Featured Publications

1. Gupta, S. C., Prateeksha, P., Tripathi, T., Sidhu, O. P., & Singh, B. N. (2025). Assessment of volatile compounds variability among two Commiphora species using gas chromatography coupled with chemometric analysis and their biological activities. Journal of Essential Oil Research. (Accepted). https://doi.org/

2. Singh, B. N., Tabatabaei, M., Pandit, A., Elling, L., & Gupta, V. K. (2024). Emerging advances in glycoengineering of carbohydrates/glycans and their industrial applications. Biotechnology Advances, 72, 108324. https://doi.org/

3. Sharma, V. K., Prateeksha, P., Singh, S. P., Rao, C. V., & Singh, B. N. (2023). Nyctanthes arbor-tristis bioactive extract ameliorates LPS-induced inflammation through the inhibition of NF-κB signalling pathway. Journal of Ethnopharmacology, 320, 117382. https://doi.org/

4. Gupta, A., Singh, G. D., Gautam, A., Tripathi, T., Taneja, A. K., Singh, B. N., Roy, R., Sidhu, O. P., Panda, S. K., & Bhatt, A. (2023). Unraveling compositional study, chemometric analysis, and cell-based antioxidant potential of selective high nutraceutical value amaranth cultivars using a GC–MS and NMR-based metabolomics approach. ACS Omega, 8(50). https://doi.org/

5. Jadaun, V., Prateeksha, P., Nailwal, T., & Singh, B. N. (2023). Antioxidant activity and simultaneous estimation of four polyphenolics in different parts of Carica papaya L. by a validated high-performance thin-layer chromatography method. JPC – Journal of Planar Chromatography – Modern TLC, 1–11. https://doi.org/

Carol López De Dicastillo | Materials Science | Best Industrial Research Award

Dr. Carol López De Dicastillo | Materials Science | Best Industrial Research Award

Senior Scientist, Institute of Agrochemistry and Food Technology (IATA-CSIC), Spain

Dr. Carol López de Dicastillo is a distinguished researcher in food science and materials engineering, currently serving as Tenured Researcher at the Institute of Agrochemistry and Food Technology (IATA-CSIC) in Spain. She earned her PhD in Food Science and Technology from the Polytechnic University of Valencia in 2011, after completing her MSc in 2007 and BSc in Chemistry in 2005, both from Spanish institutions. Her professional experience includes roles as a “Ramón y Cajal” Researcher in Spain (2022–2024), Marie Curie Researcher at ONYRIQ, Spain (2021–2022), and Academic-Researcher at the University of Santiago de Chile (2013–2021), with additional predoctoral and postdoctoral stays at Rutgers University (USA), CSIRO (Australia) and research collaborations in France, the Netherlands and Brazil. Her research interests focus on sustainable and active food packaging, including biodegradable and recycled polymers, hydrophilic polymers, chemical functionalization, controlled release and polymer-based delivery systems. She possesses strong research skills in polymer synthesis, emulsification, chemical grafting, material characterization and industrial technology transfer. Dr. Carol López de Dicastillo has authored 85 publications with 3,540 citations and an h-index of 33, including high-impact Q1 journal articles, 8 book chapters, and holds 7 patents (6 as responsible inventor). She has supervised 3 PhD students (2 ongoing), 4 MSc and 17 BSc theses, and taught courses in Food Engineering, Food Technology and Chemical Engineering. Her awards and honors include the Marie Curie Fellowship and Ramón y Cajal Research Contract, reflecting her excellence in research and international collaboration. Dr. Carol López de Dicastillo has also contributed to community outreach and science dissemination through initiatives such as PRONANO, CONICYT and #mejorIata. In conclusion, her outstanding contributions to sustainable food packaging, mentorship, innovation and international research collaborations make her highly deserving of recognition, highlighting her potential to continue advancing materials science and industrial applications globally.

Profile: Scopus | ORCID | Loop | Sci Profiles | Web of Science | LinkedIn

Featured Publications

1. López de Dicastillo, C., Gómez-Estaca, J., López-Carballo, G., Gavara, R., & Hernández-Muñoz, P. (2023). Agro-industrial protein waste and co-products valorization for the development of bioplastics: Thermoprocessing and characterization of feather keratin/gliadin blends. Molecules, 28(7350).

2. Velásquez, E., Garrido, L., Valenzuela, X., Galotto, M. J., Guarda, A., & López de Dicastillo, C. (2023). Valorization of post-consumer recycled polypropylene through their reinforcement with amine and amine/silane organically modified clays for potential use in food packaging. Food Packaging and Shelf Life, 38, 101121.

3. Patiño Vidal, C., Luzi, F., Puglia, D., López-Carballo, G., Rojas, A., Galotto, M. J., & López de Dicastillo, C. (2023). Development of a sustainable and antibacterial food packaging material based on a biopolymeric multilayer system composed by polylactic acid, chitosan, cellulose nanocrystals, and ethyl lauroyl arginate. Food Packaging and Shelf Life, 36, 101050.

4. Rojas, A., Velásquez, E., Piña, C., Galotto, M. J., & López de Dicastillo, C. (2021). Designing active mats based on cellulose acetate/polycaprolactone core/shell structures with different release kinetics. Carbohydrate Polymers, 261, 117849.

5. Velásquez, E. J., Patiño-Vidal, C., Rojas, A., Guarda, A., Galotto, M. J., & López de Dicastillo, C. (2021). Natural antimicrobials and antioxidants added to polylactic acid packaging films. Part I: Polymers processing techniques. Comprehensive Reviews in Food Science and Food Safety, 20(5), 4378–4393.