Asif Muzaffar | Artificial Intelligence and Machine Learning | Research Excellence Award

Dr. Asif Muzaffar | Artificial Intelligence and Machine Learning | Research Excellence Award

Teaching Fellow | Birmingham City University | United Kingdom

Dr. Asif Muzaffar is a recognized researcher in Operations and Supply Chain Management, known for advancing quantitative modelling, sustainable operations, and digital supply chain innovation. With 816 citations, 45 documents, an h-index of 16, and an i10-index of 17, his scholarly influence is reflected through publications in leading journals, including Sustainable Production and Consumption, Sustainable Development, Operations Management Research, Technological Forecasting & Social Change, International Journal of Disaster Risk Reduction, and the Journal of Services Marketing. His research portfolio encompasses 21 peer-reviewed journal papers, multiple conference contributions, and ongoing works addressing dynamic pricing, newsvendor models, sustainable procurement, and consumer behavior in digital environments. Dr. Asif Muzaffar’s contributions span supply chain contracts, institutional pressures, triple bottom line sustainability, rebate mechanisms, and technology-enabled service innovations such as AR/VR. His work often integrates simulation modelling, optimization, and game-theoretic frameworks to generate actionable insights for resilient, low-carbon, and digitally enabled supply chain systems. He has disseminated his findings at major international conferences, contributing evidence-based perspectives on biased decision-making, rebate coordination, and supply chain optimization. His research leadership extends to mentoring graduate research, shaping sustainable supply chain methodologies, and contributing as a reviewer for high-impact journals including Technological Forecasting & Social Change and Sustainable Development. Through these scholarly contributions, Dr. Asif Muzaffar has established himself as an influential voice in contemporary sustainable operations and supply chain research.

Citation Metrics (Google Scholar)

1000

800

600

400

200

0

Citations
816

Documents
45

h-index
16

h-index
17

Citations

Documents

h-index

i10-index

View Scopus Profile   View ORCID Profile   View Google Scholar   View ResearchGate

Featured Publications

Ibrahim Aromoye | Artificial Intelligence and Machine Learning | Editorial Board Member

Mr. Ibrahim Aromoye | Artificial Intelligence and Machine Learning | Editorial Board Member

Graduate Research Assistant | Universiti Teknologi PETRONAS | Malaysia

Mr. Ibrahim Aromoy is a promising researcher in Electrical and Electronic Engineering with a growing scholarly footprint in hybrid UAV systems, artificial intelligence, and intelligent surveillance technologies. His research is centered on the development of a Pipeline Inspection Air Buoyancy Hybrid Drone, a novel UAV concept that combines lighter-than-air and heavier-than-air technologies to improve flight endurance, stability, and inspection efficiency. By integrating deep learning–based object detection architectures into UAV platforms, his work advances real-time pipeline monitoring, anomaly identification, and autonomous decision-making for industrial applications. His contributions span AI-driven automation, robotics, swarm intelligence, energy-efficient IoT systems, and 5G-enabled surveillance technologies. He has authored several research papers in reputable international journals and conferences, including publications in IEEE Access, Neurocomputing, and Elsevier venues. These works address UAV reconnaissance, transformer-based detection models for pipeline integrity assessment, and optimization frameworks inspired by swarm behavior. His research output reflects measurable scholarly influence, with 15 Scopus citations, 7 indexed documents, and an h-index of 2. Mr. Ibrahim Aromoy has participated in multiple research and development projects, contributing to UAV design, embedded hardware integration, machine learning pipelines, and cyber-secure control systems. His work in hybrid drone architecture and automated surveillance has been supported by competitive institutional funding, reinforcing the technological relevance and innovation potential of his research. His scientific contributions extend beyond publications to academic service. He serves as a peer reviewer for high-impact journals such as IEEE Access and Results in Engineering, supporting the advancement of rigorous research dissemination in engineering and applied sciences. His expertise also includes AI vision systems, OpenCV-based automation, and embedded cybersecurity applications for unmanned systems, further strengthening his interdisciplinary research profile. Mr. Ibrahim Aromoy has been recognized with research-focused scholarships and academic distinctions that support his ongoing work in UAV innovation and intelligent automation. Through his integrated expertise in UAV engineering, deep learning, and intelligent inspection systems, he continues to contribute meaningfully to the evolution of smart surveillance, autonomous robotics, and AI-augmented engineering technologies.

Profiles: Scopus | ORCID | Google Scholar | ResearchGate | Web of Science

Featured Publications

1. Aromoye, I., Lo, H., Sebastian, P., Ghulam, E., & Ayinla, S. (2025). Significant advancements in UAV technology for reliable oil and gas pipeline monitoring. Computer Modeling in Engineering & Sciences, 142(2), 1155.

2. Aromoye, I. A., Hiung, L. H., & Sebastian, P. (2025). P-DETR: A transformer-based algorithm for pipeline structure detection. Results in Engineering, 26, 104652.

3. Zahid, F., Ali, S. S. A., & Aromoye, I. A. (2025). Exploring the potential benefits and overcoming the constraints of virtual and augmented reality in operator training. Transportation Research Procedia, 84, 625–632.

4. Mansoor, Y., Zahid, F., Azhar, S. S., Rajput, S., & Aromoye, I. A. (2025). Energy-efficient solar water pumping: The role of PLCs and DC-DC boost converters in addressing water scarcity. Transportation Research Procedia, 84, 681–688.

5. Zahid, F., Rajput, S., Ali, S. S. A., & Aromoye, I. A. (2025). Challenges and innovations in 3D object recognition: The integration of LiDAR and camera sensors for autonomous applications. Transportation Research Procedia, 84, 618–624.

Soufiane Bacha | Artificial Intelligence | Best Researcher Award

Mr. Soufiane Bacha | Artificial Intelligence | Best Researcher Award

PhD Student, University of Science and Technology Beijing, Algeria

Mr. Soufiane Bacha is a promising young researcher in Artificial Intelligence and Data Quality with a strong academic background and growing international exposure. He is currently pursuing a Ph.D. in Data Quality at the University of Science and Technology Beijing (2023–ongoing) and a Ph.D. in Cancer Epidemiology at the Department of Computer Science, Ibn Khaldoun University of Tiaret, Algeria (2021–2025). He also holds a Master’s degree in Software Engineering (2019–2021), where he ranked first in his class and completed a thesis on imbalanced datasets and boosting methods, and a B.Sc. in Computer Science (2016–2019) with strong foundations in algorithms, cryptography and programming. Professionally, Mr. Soufiane Bacha gained valuable international research experience through an internship at the Faculty of Polytechnic Mons, UMONS University in Belgium, where he worked on Internet of Things (IoT) applications involving Raspberry Pi, Arduino and sensor technologies. He has served as a part-time lecturer in Graph Theory and as an ICT trainer in web development, demonstrating strong teaching, leadership, and communication skills. His research interests span artificial intelligence, data quality, machine learning for imbalanced datasets, cancer epidemiology, distributed applications and business analytics. He is proficient in Python, C/C++, Java, SQL and data analysis tools, with expertise in OLAP, data mining, and deep learning frameworks. His achievements include an NVIDIA Deep Learning Institute Certificate, participation in AI workshops, and a Scopus-indexed publication. With a dual doctoral training and interdisciplinary focus, Mr. Soufiane Bacha is well-positioned to make impactful contributions to AI-driven data quality research and healthcare analytics on a global scale.

Profile: ORCID | Google Scholar | ResearchGate

Featured Publications

1. Bacha, S., Ning, H., Mostefa, B., Sarwatt, D. S., & Dhelim, S. (2025). A novel double pruning method for imbalanced data using information entropy and roulette wheel selection for breast cancer diagnosis (arXiv:2503.12239).