Xilian Xu | Nanotechnology and Materials Science | Research Excellence Award

Dr. Xilian Xu | Nanotechnology and Materials Science | Research Excellence Award

Lecturer | Zhejiang University of Science and Technology | China

Dr. Xilian Xu is an accomplished researcher with a strong scholarly impact, evidenced by 2,289 Scopus citations, 38 peer-reviewed publications, and an h-index of 25. His research portfolio centers on high-quality journal articles, conference contributions, and scholarly outputs that advance fundamental and applied science. Dr. Xilian Xu’s work demonstrates consistent contributions to innovative research themes, addressing complex scientific questions through rigorous experimental design and analytical methodologies. He has actively contributed to competitive research projects and funded programs, supporting translational and interdisciplinary research outcomes. His scholarly activities include research findings with measurable academic and societal impact, reflected in citation performance and journal visibility. Dr. Xilian Xu has also contributed to innovation-driven R&D activities, strengthening knowledge transfer and applied research potential. In addition, he has provided professional service as a peer reviewer and editorial contributor, supporting research quality and integrity within the scientific community. His research achievements and recognitions underscore sustained excellence and influence in his field.

Research Metrics (Scopus)

2500

2000

1500

1000

500

0

Citations
2,289

Documents
38

h-index
25

Citations

Documents

h-index

View Scopus Profile

Featured Publications

Peijia Bai | Nanotechnology and Materials Science | Best Researcher Award

Dr. Peijia Bai | Nanotechnology and Materials Science | Best Researcher Award

Assistant Research Fellow | Beihang University | China

Dr. Peijia Bai is an emerging materials scientist whose research significantly advances high-efficiency thermal management, electrothermal conversion, and radiative cooling technologies. His work centers on electrocaloric materials and devices, ultrafast-response phase-change materials (PCMs), thermal system design, and protective color radiative-cooling coatings. With a strong focus on bridging fundamental materials science with practical applications, he has contributed to establishing next-generation energy-efficient cooling strategies and improving heat-dissipation performance for electronic and aerospace systems. Dr. Peijia Bai has published more than 30 peer-reviewed journal articles across leading platforms including Advanced Materials, Nature Communications, Science, and Joule, with over 812 Scopus citations, 24 documents and an h-index of 14. His publications include more than 10 papers as first or corresponding author, highlighting his prominent role in driving independent innovations. He has also contributed to one research monograph and authored multiple high-impact conference papers that extend his work to global scientific communities. A major contribution of his research is the development of a standardized electrothermal-effect measurement protocol, which has been widely adopted by both academia and industry. This standardized method has been cited extensively in top-tier journals and is now considered an important benchmark for evaluating electrothermal device performance. His work has also yielded seven patented technologies covering thermal-functional materials and device architectures, demonstrating strong translational potential. Dr. Peijia Bai has led and contributed to multiple funded research projects related to thermal management materials, advanced cooling devices, and energy-conversion technologies. His innovations have earned him the prestigious SAMPE International Award and recognition within professional societies such as the Zhejiang Society for Materials Progress. He also serves on the young editorial boards of cScience and Renewable and Sustainable Energy, reflecting his growing influence in the field. Dr. Peijia Bai’s research continues to advance innovative thermal strategies, contributing impactful solutions for sustainable energy technologies, aerospace materials, and advanced electronic systems.

Profiles: Scopus | ORCID | ResearchGate

Featured Publications

1. Bai, P., Yang, Q., & Yu, S. (2025). Electrocaloric refrigeration utilizing lead-free multilayer ceramics with high heat transfer efficiency. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2025.128927

2. Bai, P., Yang, Q., & Yu, S. (2025). Integration of efficient photothermal and flexible solid-solid PCM for personal thermoregulation in cold environments. iScience. https://doi.org/10.1016/j.isci.2025.114032

3. Wang, G., Bai, P., Yuan, S., Bo, Y., Zhang, D., & Ma, R. (2025). Flexible electrocaloric polymer stack driven by one AA battery for highly efficient personalized thermoregulation. Nano Letters, 25. https://doi.org/10.1021/acs.nanolett.5c03730

4. Wang, G., Bai, P., Yuan, S., Bo, Y., Zhou, Z., Zhang, D., & Ma, R. (2025). Highly efficient cooling via synergistic electro‐thermal phase changes. Advanced Materials. https://doi.org/10.1002/adma.202506006

5. Ma, W., Liu, X., Yang, T., Wang, J., Qiu, Z., Cai, Z., Bai, P., Ji, X., & Huang, Y. (2025). Strong magnetic–dielectric synergistic gradient metamaterials for boosting superior multispectral ultra‐broadband absorption with low‐frequency compatibility. Advanced Functional Materials. https://doi.org/10.1002/adfm.202314046

Sofia Teixeira | Nanotechnology and Materials Science | Editorial Board Member

Dr. Sofia Teixeira | Nanotechnology and Materials Science | Editorial Board Member

Senior Researcher | Tyndall National Institute | Ireland

Dr. Sofia Teixeira is a nanotechnology-focused researcher whose work bridges advanced materials science, biomedical engineering, and micro/nanofabrication. Her research background centers on the design and development of nanoscale sensing platforms capable of detecting disease-associated biomolecules with high sensitivity and selectivity. Trained in nanotechnology and electrochemical sensing, she has contributed to innovations in biomedical devices, electronic materials, and diagnostic interfaces, with a strong emphasis on translational applications that support early disease detection. Her research outputs include peer-reviewed journal publications, conference communications, and technology-driven studies exploring functional nanomaterials, biomarker recognition systems, and bio-electronic interfaces. With 89 citations, 4 research documents, and an h-index of 3, her contributions reflect an emerging yet impactful presence in the fields of nanosensors, biomaterials, and applied biotechnology. She has also advanced fabrication protocols using micro- and nanofabrication techniques, contributing to improved device performance, reproducibility, and real-world applicability. Dr. Sofia Teixeira has been involved in multidisciplinary R&D efforts linked to biomedical diagnostics, electrochemical sensor optimization, and nanostructured material design. Her work frequently integrates chemical engineering, electrochemistry, and medical biotechnology, positioning her research within critical domains such as point-of-care diagnostics, biosensing technologies, and health-related nanotechnology. She has participated in collaborative research initiatives and has contributed to the scientific community through reviewer service and research dissemination activities. Her innovations in nanoscale detection platforms and biomedical materials continue to support the advancement of next-generation diagnostic technologies and applied sensor research.

Profiles: Scopus | ORCID | Google Scholar | ResearchGate | Loop 

Featured Publications

  • Azzopardi, E., Lloyd, C., Teixeira, S. R., Conlan, R. S., & Whitaker, I. S. (2016). Clinical applications of amylase: Novel perspectives. Surgery, 160(1), 26–37.

  • Teixeira, S., Burwell, G., Castaing, A., Gonzalez, D., Conlan, R. S., & Guy, O. J. (2014). Epitaxial graphene immunosensor for human chorionic gonadotropin. Sensors and Actuators B: Chemical, 190, 723–729.

  • Teixeira, S., & Sampaio, P. (2013). Food safety management system implementation and certification: Survey results. Total Quality Management & Business Excellence, 24(3–4), 275–293.

  • Teixeira, S., Conlan, R. S., Guy, O. J., & Sales, M. G. F. (2014). Label-free human chorionic gonadotropin detection at picogram levels using oriented antibodies bound to graphene screen-printed electrodes. Journal of Materials Chemistry B, 2(13), 1852–1865.

  • Berbel-Filho, W. M., Berry, N., Rodríguez-Barreto, D., Teixeira, S., … (2020). Environmental enrichment induces intergenerational behavioural and epigenetic effects on fish. Molecular Ecology.

 

Brahma Singh | Nanotechnology and Materials Science | Best Researcher Award

Dr. Brahma Singh | Nanotechnology and Materials Science | Best Researcher Award

Senior Principal Scientist | CSIR – National Botanical Research Institute (NBRI) | India

Dr. Brahma Singh is a highly cited researcher in herbal nanobiotechnology, phytochemistry, microbial metabolomics, and natural-product–based therapeutics. With Scopus 6,632+ citations, 514+ cumulative journal impact factor, h-index 41, and 88+ Scopus-indexed documents, his work significantly advances plant-derived bioactives, nanodelivery systems, and biomedical applications. His research focuses on the bio-prospection of phytochemicals, metabolomics of plants and microbes, and the development of nano-enabled herbal formulations to enhance bioavailability, anti-inflammatory potential, antimicrobial efficacy, and immunomodulatory responses. He has pioneered several innovations targeting quorum sensing, biofilm inhibition, microbial virulence, oxidative stress, cancer therapeutics, and nanobiomaterial engineering. Dr. Brahma Singh has authored numerous high-impact publications in leading journals such as Biotechnology Advances, Trends in Biotechnology, Advanced Functional Materials, ACS Applied Bio Materials, Food Chemistry, Scientific Reports, Cancer and Metastasis Reviews, and Journal of Ethnopharmacology. Many of his articles address critical biomedical challenges, including COVID-19 inflammatory pathways, diabetic wound healing, gut microbiota modulation, and lichen- or plant-derived anticancer compounds. His research findings have been widely recognized for introducing bio-inspired nanoparticles, novel glycobiotechnology approaches, and sustainable valorization of agricultural waste. He holds 13 patents spanning herbal formulations, antimicrobial gels, nanocompositions, bioavailable curcumin technologies, dental care products, wound-healing biomaterials, and nutraceutical innovations. Dr. Brahma Singh has also developed 16 herbal technologies, including anti-fungal gels, polyherbal toothpaste, antioxidant supplements, advanced sanitizers, nanocoatings, anti-acne gels, and herbal hydrogel therapies-15 of which have been successfully transferred to industry.As an active contributor to the scientific community, he has published one edited book, nine book chapters, and serves on editorial boards of reputed journals including Scientific Reports, PLoS ONE, Frontiers in Fungal Biology, and others. His research excellence has been recognized through major scientific awards and fellowships, cementing his leadership in natural product biotechnology, herbal nanomedicine, and translational phytopharmaceutical R&D.

Profiles: Scopus | ResearchGate | Loop

Featured Publications

1. Gupta, S. C., Prateeksha, P., Tripathi, T., Sidhu, O. P., & Singh, B. N. (2025). Assessment of volatile compounds variability among two Commiphora species using gas chromatography coupled with chemometric analysis and their biological activities. Journal of Essential Oil Research. (Accepted). https://doi.org/

2. Singh, B. N., Tabatabaei, M., Pandit, A., Elling, L., & Gupta, V. K. (2024). Emerging advances in glycoengineering of carbohydrates/glycans and their industrial applications. Biotechnology Advances, 72, 108324. https://doi.org/

3. Sharma, V. K., Prateeksha, P., Singh, S. P., Rao, C. V., & Singh, B. N. (2023). Nyctanthes arbor-tristis bioactive extract ameliorates LPS-induced inflammation through the inhibition of NF-κB signalling pathway. Journal of Ethnopharmacology, 320, 117382. https://doi.org/

4. Gupta, A., Singh, G. D., Gautam, A., Tripathi, T., Taneja, A. K., Singh, B. N., Roy, R., Sidhu, O. P., Panda, S. K., & Bhatt, A. (2023). Unraveling compositional study, chemometric analysis, and cell-based antioxidant potential of selective high nutraceutical value amaranth cultivars using a GC–MS and NMR-based metabolomics approach. ACS Omega, 8(50). https://doi.org/

5. Jadaun, V., Prateeksha, P., Nailwal, T., & Singh, B. N. (2023). Antioxidant activity and simultaneous estimation of four polyphenolics in different parts of Carica papaya L. by a validated high-performance thin-layer chromatography method. JPC – Journal of Planar Chromatography – Modern TLC, 1–11. https://doi.org/

Yonghui Sun | Materials Science | Best Researcher Award

Dr. Yonghui Sun | Materials Science | Best Researcher Award

Assistant Professor, Henan Normal University, China

Dr. Yonghui Sun is an accomplished researcher in supramolecular and organic chemistry with a specialization in purely organic room-temperature phosphorescence materials, currently serving as an Associate Professor at the School of Chemistry and Chemical Engineering, Henan Normal University, China. He earned his Ph.D. in Organic Chemistry from Nankai University in 2023 under the supervision of Prof. Yu Liu, following an M.S. in Organic Chemistry from Henan Normal University (2019) and a B.S. in Chemistry from Anyang Institute of Technology (2016). His professional experience includes academic research and teaching, with a focus on molecular engineering, matrix confinement strategies, macrocyclic chemistry, supramolecular assembly, and artificial transmembrane transport systems. Dr. Yonghui Sun has presented his research at prestigious national and international conferences, including the ISMSC 2024 in Hangzhou and the Asian Cyclodextrin Conference, highlighting his active involvement in global academic exchanges. His research skills encompass advanced molecular design, nanomaterial synthesis and supramolecular interaction analysis, which have led to high-impact publications indexed in Scopus and IEEE, with 9 documents, 303 citations and an h-index of 8. Recognized for his academic promise, Dr. Yonghui Sun has received honors through invited talks and scientific engagement, contributing to the broader chemistry community. In conclusion, his strong educational background, innovative research contributions and growing academic influence establish him as a promising leader in nanotechnology and supramolecular chemistry, with great potential to impact science and society.

Profile: Scopus

Featured Publications

1. Yonghui Sun, Lijuan Liu, Linnan Jiang, Yong Chen, Hengyue Zhang, Xiufang Xu, and Yu Liu, (2023). Unimolecular chiral stepping inversion machine. Journal of the American Chemical Society, 145(28), 16711–16716.

2. Yonghui Sun, Linnan Jiang, Lijuan Liu, Yong Chen, Wen-Wen Xu, Jie Niu, Yuexiu Qin, Xiufang Xu, and Yu Liu, (2023). Two calix[3]phenothiazine-based amorphous pure organic room-temperature phosphorescent supramolecules mediated by guest. Advanced Optical Materials, 11(20), 2300326.

3. Yonghui Sun, Linnan Jiang,Yong Chen, Yu Liu, (2024). In situ crosslink polymerization induced long-lived multicolor supramolecular hydrogel based on modified β-cyclodextrin. Chinese Chemical Letters, 35, 108644.

4. Yonghui Sun, Yong Chen, Linnan Jiang, Xiaoyong Yu, Yuexiu Qin, Shuaipeng Wang, and Yu Liu, (2022). Purely organic blue room-temperature phosphorescence activated by acrylamide in situ photopolymerization. Advanced Optical Materials, 10(24), 2201330.

5. Yonghui Sun, Yong Chen, Xianyin Dai, Yu Liu, (2021). Butyrylcholinesterase responsive supramolecular prodrug with targeted near-infrared cellular imaging property. Asian Journal of Organic Chemistry, 10(12), 3245–3252.

 

Mohammad Raza Miah | Materials Science | Best Researcher Award

Assist. Prof. Dr. Mohammad Raza Miah | Materials Science | Best Researcher Award

Assistant Professor | Department of Textile Engineering, BGMEA University of Fashion and Technology (BUFT) | Bangladesh

Assist. Prof. Dr. Mohammad Raza Miah is a distinguished academic and researcher in the field of materials physics, chemistry, and textile engineering. He has built a strong reputation for his expertise in sustainable polymeric nanocomposites, high-performance materials and textile innovation. His academic journey has been shaped by international experiences across Bangladesh and China, where he pursued advanced degrees in prestigious institutions under English-taught programs. He has served in various academic roles, progressively advancing from lecturer to senior lecturer, visiting assistant professor and currently as an assistant professor in the Department of Textile Engineering at BGMEA University of Fashion & Technology. His work integrates teaching excellence with a strong research focus, particularly in the development and characterization of bio-based polymeric materials. In addition to his teaching responsibilities, Assist. Prof. Dr. Mohammad Raza Miah is an active contributor to international scientific conferences, workshops and collaborative research projects. He has received multiple awards for academic excellence, international recognition and research contributions, reflecting his dedication to scholarly impact. His professional memberships in engineering and textile organizations further demonstrate his commitment to advancing the field. Passionate about innovation, sustainability and scientific problem-solving, Assist. Prof. Dr. Mohammad Raza Miah work continues to bridge fundamental materials science with industrial applications in textiles and polymers.

Publication Profile

Scopus

Orcid

Google Scholar

Education

Assist. Prof. Dr. Mohammad Raza Miah’s educational foundation reflects a strong interdisciplinary blend of materials science, chemistry and textile engineering. He earned his Doctor of Philosophy in Materials Physics and Chemistry from the University of Chinese Academy of Sciences, hosted at the Ningbo Institute of Materials Technology and Engineering, where his research centered on sustainable polyester nanocomposites derived from renewable resources. His doctoral thesis explored the preparation, structural analysis, and property relationships of 2,5-FDCA-based polyester nanocomposites, focusing on environmentally friendly material innovations. Prior to this, he completed a Master’s degree in Textile Engineering at Wuhan Textile University, gaining advanced expertise in fiber science, material processing and applied textile technology. His academic career began with a Bachelor’s degree in Textile Engineering from Atish Dipankar University of Science and Technology in Bangladesh, where he developed foundational knowledge in yarn manufacturing, fabric design, dyeing and finishing processes. All of his degree programs were delivered in English, providing him with strong communication skills in international academic settings. His educational background not only equips him with a broad technical understanding but also enables him to conduct interdisciplinary research that connects materials chemistry with practical textile applications, bridging scientific discovery with industrial relevance.

Professional Experience

Assist. Prof. Dr. Mohammad Raza Miah’s professional career is marked by progressive roles in academia, where he has combined teaching excellence with impactful research contributions. He currently serves as an Assistant Professor in the Department of Textile Engineering at BGMEA University of Fashion & Technology, where he teaches core textile courses, supervises research projects, and contributes to departmental development. Before attaining his current position, he served as a Visiting Assistant Professor at the same institution, as well as at Narsingdi Textile Engineering College, affiliated with the Bangladesh University of Textiles. These positions allowed him to engage with a diverse student body, deliver specialized lectures, and integrate industrial case studies into academic instruction. He has also held roles as Senior Lecturer and Lecturer in the Department of Textile Engineering at Bangladesh University of Business & Technology, where he developed new teaching materials, mentored student research, and collaborated with colleagues on curriculum improvement. Across all positions, his responsibilities have included laboratory instruction, research project supervision, academic advising, and participation in institutional committees. His professional journey reflects dedication to advancing textile education, fostering innovation in polymeric and composite materials and nurturing the next generation of engineers through research-driven teaching methodologies.

Research Interest

Assist. Prof. Dr. Mohammad Raza Miah’s research interests lie at the intersection of materials chemistry, polymer science, and textile engineering, with a strong emphasis on sustainability and advanced material functionality. He focuses on the design, synthesis and characterization of bio-based polymeric nanocomposites, particularly those derived from renewable resources such as 2,5-furandicarboxylic acid (FDCA). His work investigates the structural, thermal and mechanical properties of sustainable polyesters and their reinforcement with nanomaterials to enhance performance for various applications. In the field of textiles, his research explores natural dye extraction from botanical sources, eco-friendly coloration processes and integration of functional coatings to improve fabric properties. He is also interested in the synthesis and application of high-performance polymers, two-dimensional (2D) materials, and hybrid composites for advanced engineering applications. His approach combines experimental fabrication with advanced characterization techniques, including NMR, XRD, SEM, FT-IR, TEM, DSC, TGA and Raman spectroscopy. Through his research, Assist. Prof. Dr. Mohammad Raza Miah aims to contribute to the global transition towards greener materials, reduced environmental impact and innovative textile products with multifunctional properties. His work not only addresses industrial challenges but also aligns with global sustainability goals, promoting resource-efficient manufacturing and circular economy principles within the polymer and textile sectors.

Research Skills

Assist. Prof. Dr. Mohammad Raza Miah possesses a comprehensive set of research skills spanning materials fabrication, polymer chemistry, nanotechnology and textile science. He is proficient in the synthesis of bio-based polymers, preparation of nanocomposites, and processing of textile materials for functional performance. His expertise covers a wide range of advanced characterization techniques, including nuclear magnetic resonance (NMR), X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM, TEM, HRTEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray mapping. He is adept at UV-Vis spectroscopy, spectrophotometry, and surface analysis methods for both polymeric and textile materials. Beyond laboratory instrumentation, he has strong computational skills, including data analysis with Origin Pro, MATLAB and Python, as well as AI-assisted enzyme and material design tools such as Rosetta, RF-Diffusion, and FoldX. He is experienced in scientific writing, project management, and collaborative research, maintaining high-quality standards in experimental design and reporting. His skills also extend to technical drawing, AutoCAD and graphic editing for research visualization. By integrating experimental expertise with computational tools, Assist. Prof. Dr. Mohammad Raza Miah delivers robust research outcomes that advance knowledge and offer industrial applicability in materials and textile engineering.

Awards and Honors

Throughout his academic and professional journey, Assist. Prof. Dr. Mohammad Raza Miah has been recognized for his outstanding performance, leadership and contributions to research and education. He has received prestigious awards for excellence in international graduate studies, acknowledging his high academic standing and impactful research during his doctoral program. His achievements have been celebrated by leading institutions, including the University of Chinese Academy of Sciences and the Ningbo Institute of Materials Technology and Engineering. He has been the recipient of competitive international scholarships and travel grants, enabling him to pursue advanced studies and present his work at global conferences. These include recognition from the Bangladesh-Sweden Trust Fund, the CAS-TWAS President’s Fellowship and institutional scholarships from Wuhan Textile University and Atish Dipankar University of Science and Technology. Such honors reflect his academic dedication, research excellence and ability to represent his institutions at the highest levels. They also demonstrate the global relevance of his work, as he has engaged with international scientific communities through conferences in Asia, Europe and North America. His awards not only acknowledge past accomplishments but also serve as motivation for continued innovation in sustainable materials and advanced textile technologies.

Author Metrics

  • Publications: 32

  • Total Citations: 673+
  • h-index: 14

  • i10-index: 15

(including research papers, review articles, communications, letters, conference proceedings, book chapters, and invited features)

Publications Top Notes

1. Sustainable approach for wastewater treatment using microbial fuel cells and green energy generation–A comprehensive review
Citations: 138
Year: 2021

2. Polypyrrole-based sensors for volatile organic compounds (VOCs) sensing and capturing: A comprehensive review
Citations: 120
Year: 2022

3. Textile-based flexible and printable sensors for next generation uses and their contemporary challenges: A critical review
Citations: 51
Year: 2022

4. Recent Progress on Sustainable 2, 5-Furandicarboxylate-Based Polyesters: Properties and Applications
Citations: 42
Year: 2024

5. A Study on the Effects of Pre-treatment in Dyeing Properties of Cotton Fabric and Impact on the Environment
Citations: 36
Year: 2016

6. Lignin Modification for Enhanced Performance of Polymer Composites
Citations: 33
Year: 2023

7. High‐Strength, High‐Barrier Bio‐Based Polyester Nanocomposite Films by Binary Multiscale Boron Nitride Nanosheets
Citations: 32
Year: 2023

8. High-compact MXene-based coatings by controllable interfacial structures
Citations: 28
Year: 2023

9. Super-anticorrosion epoxy nanocomposites prepared with P-doped carbon dots functionalized large-size boron nitride nanosheets
Citations: 26
Year: 2023

10. Impact of strain on the electronic, phonon, and optical properties of monolayer transition metal dichalcogenides XTe2 (X= Mo and W)
Citations: 26
Year: 2022

Conclusion

Assist. Prof. Dr. Mohammad Raza Miah stands out as an accomplished educator, researcher and innovator in the fields of materials science, polymer chemistry and textile engineering. His career reflects a balance between academic excellence, research productivity and commitment to sustainability. With expertise in bio-based polymeric nanocomposites, high-performance materials, and eco-friendly textile processing, he bridges the gap between fundamental science and industrial application. His advanced research skills, honed through extensive laboratory experience and international collaboration, allow him to contribute meaningfully to global challenges in sustainable manufacturing. His numerous awards and honors underscore his academic leadership and dedication to impactful research. As a member of professional engineering and textile organizations, he remains actively engaged with both academic and industrial communities, fostering collaboration and knowledge exchange. Beyond his professional achievements, Assist. Prof. Dr. Mohammad Raza Miah is passionate about inspiring students, advancing green technologies, and contributing to a future where materials innovation supports environmental stewardship. His academic journey serves as a testament to the value of dedication, interdisciplinary expertise and a vision for a sustainable and technologically advanced textile industry.

 

Iman Akbarzadeh | Nanotechnology | Young Scientist Award

Mr. Iman Akbarzadeh | Nanotechnology | Young Scientist Award

Iman Akbarzadeh at School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia.

Mr. Iman Akbarzadeh is an emerging researcher in the field of biomedical science, currently pursuing his Ph.D. at the University of Technology Sydney. His academic background in chemical engineering and biotechnology underpins his multidisciplinary approach to tackling major biomedical challenges. Mr. Akbarzadeh has contributed significantly to cutting-edge research in nanotechnology-based drug delivery, with a strong emphasis on preeclampsia treatment and cancer therapy. He has held research positions at several prestigious institutions in Iran, including the Research Institute for Gastroenterology & Liver Diseases, the Pasteur Institute, and Sharif University of Technology. His work has culminated in multiple high-impact publications in journals such as Coordination Chemistry Reviews and Biomaterials Advances. Beyond publishing, he actively contributes to the scientific community as a peer reviewer for top-tier journals including Pharmaceutics and the International Journal of Biological Macromolecules. With a robust skill set ranging from nanoparticle synthesis to advanced analytical techniques and a growing list of academic accolades, Mr. Akbarzadeh is poised to make impactful contributions to translational medicine and nanotherapeutics.

Publication Profile

Scopus

Educational Details

  • 2024 – Present: Ph.D. in Biomedical Science, University of Technology Sydney, Australia
    Thesis Topic: Developing Novel Strategies to Monitor and Treat Preeclampsia Using Nanotechnology Approaches.
  • 2016 – 2019: M.Sc. in Chemical Engineering – Biotechnology, Sharif University of Technology, Iran
    Thesis Topic: Niosomal Delivery of Simvastatin to MDA-MB-231 Cancer Cells.
  • 2012 – 2016: B.Sc. in Chemical Engineering, Ferdowsi University of Mashhad, Iran

Professional Experience

  • 2020 – 2024: Researcher, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • 2017 – 2023: Researcher, Nanobiotechnology Department, Pasteur Institute, Tehran, Iran
  • 2019 – 2023: Researcher, Nanotechnology and Drug Delivery Laboratory, Sharif University of Technology, Tehran, Iran
    Mr. Akbarzadeh has played a vital role in executing projects related to drug delivery, antimicrobial therapies, and nanoparticle engineering. These positions allowed him to gain practical experience in multidisciplinary research teams focused on translational outcomes.

Research Interest

Mr. Akbarzadeh’s research interests include:

  • Drug and Gene Delivery
  • Preeclampsia and Pregnancy-related Complications
  • Cancer Research and Targeted Therapy
  • Tissue Engineering and Regenerative Medicine
  • 3D Bioprinting for Biomedical Applications
  • Wound Healing and Biomaterials
  • Microfluidics for Drug Screening
  • Extracellular Vesicles (EVs) and Intercellular Communication

Research Skills

Mr. Akbarzadeh possesses a wide range of technical and analytical skills, including:

  • Cell Culture and Assays: Cell culture, MTT assay, flow cytometry
  • Microbiology: Biofilm test, MIC-MBS assay, disk diffusion, time-kill assay
  • Biochemistry: BCA assay, ELISA
  • Analytical Methods: HPLC, UV-Vis, DLS, TEM, SEM, FTIR, XRD, DSC
  • Nanoparticle Synthesis: Lipid, metal, mesoporous silica, and polymeric nanoparticles
  • Software Proficiency: Microsoft Office, GraphPad, FIJI, SPSS, Design-Expert, Photoshop, MATLAB, BioRender, OriginPro

Awards and Honors

  • Recipient of the International Research Award on New Science Inventions in the “Best Research Award” category, 2021
  • Ranked 17th out of ~10,000 in Iran’s nationwide Master’s entrance exam, 2017
  • Ranked in the top 3% out of ~300,000 in Iran’s nationwide Bachelor’s entrance exam, 2012
    These distinctions highlight Mr. Akbarzadeh’s academic excellence and his recognition as a leading talent in his field.

Author Metrics

  • Total Publications: 54

  • Total Citations: 2,171

  • h-index: 21

  • i10-index: 35

Top Noted Publication

  1. Azari Torbat, N., Akbarzadeh, I., Rezaei, N., Moghaddam, Z., Bazzazan, S., Mostafavi, E.
    “Curcumin-Incorporated Biomaterials: In silico and in vitro evaluation of biological potentials.”
    Coordination Chemistry Reviews, 2023.
    Impact Factor (IF): 20.3
    Note: I. Akbarzadeh and N. Azari Torbat contributed equally to this work.

  1. Akbarzadeh, I., Rezaei, N., Bazzazan, S., Naderi Mezajin, M., Mansouri, A., Karbalaeiheidar, H., Ashkezari, S., Salehi Moghaddam, Z., Asghari Lalami, Z., Mostafavi, E.
    “In Silico and In Vitro Studies of GENT-EDTA Encapsulated Niosomes: A Novel Approach to Enhance the Antibacterial Activity and Biofilm Inhibition in Drug-Resistant Klebsiella pneumoniae.”
    Biomaterials Advances, 2023.
    Impact Factor (IF): 5.5

  1. Dastneshan, A., Rahiminezhad, S., Naderi Mezajin, M., Nouri, H., Akbarzadeh, I., Jahanbakhshi, M., Abdihaji, M., Qahremani, R., Asghari Lalami, Z., Heydari, H., Noorbazargan, H., Mostafavi, E.
    “In Vitro, and In Vivo, Studies of Cefazolin Encapsulated UiO-66-NH₂: A New Approach for Enhanced Antibacterial Activity and Biofilm Inhibition in Drug-Resistant Staphylococcus aureus.”
    Chemical Engineering Journal, 2023.
    Impact Factor (IF): 13.4

  1. Mansoori-Kermani, A., Khalighi, S., Akbarzadeh, I., Jahed, V., Motasadizadeh, H., Ranjbar Niavol, F., Mahdieh, A., Abdinezhad, M., Rahbariasr, N., Hosseini, M., Ahmadkhani, N., Panahi, B., Fatahi, Y., Batiha, G.E.S., Mozafari, M., Mostafavi, E.
    “Engineered Hyaluronic Acid-Decorated Niosomal Nanoparticles for Controlled and Targeted Delivery of Epirubicin to Treat Breast Cancer.”
    Materials Today Bio, 2022.
    Impact Factor (IF): 8.7

  1. Akbarzadeh, I., Saremi Poor, A., Khodarahmi, M., Abdihaji, M., Moammeri, A., Jafari, S., Salehi Moghaddam, Z., Seif, M., Moghtaderi, M., Asghari Lalami, Z., Heydari, M., Adelnia, H., Farasati Far, B.
    “Gingerol/Letrozole-Loaded Mesoporous Silica Nanoparticles for Breast Cancer Therapy: In-Silico and In-Vitro Studies.”
    Microporous and Mesoporous Materials, 2022.
    Impact Factor (IF): 4.8

  1. Ghafelehbashi, R., Akbarzadeh, I., Tavakkoli Yaraki, M., Lajevardi, A., Fatemizadeh, M., Heidarpoor Saremi, L.
    “Preparation, Physicochemical Properties, In Vitro Evaluation and Release Behavior of Cephalexin-Loaded Niosomes.”
    International Journal of Pharmaceutics, 2019.
    Impact Factor (IF): 5.3

Conclusion

Mr. Iman Akbarzadeh is a dedicated and accomplished biomedical researcher with a unique interdisciplinary foundation in chemical engineering and nanobiotechnology. He is currently expanding the frontiers of knowledge in maternal-fetal health through his doctoral research in preeclampsia. With experience in leading research institutes, a portfolio of high-impact publications, and an active role in scientific peer review, Mr. Akbarzadeh demonstrates strong potential for future leadership in biomedical innovation. His technical competencies and scholarly contributions are instrumental to advancing novel diagnostic and therapeutic strategies in medicine.