Boyuan Bai | Artificial Intelligence and Machine Learning | Best Researcher Award

Dr. Boyuan Bai | Artificial Intelligence and Machine Learning | Best Researcher Award

Doctor | Beijing University of Posts and Telecommunications | China

Dr. Boyuan Bai is an emerging researcher in advanced visual computing, with a focused contribution to 3D reconstruction, Gaussian Splatting, multi-view scene modeling, and uncertainty-aware machine learning. His work integrates computer graphics, deep learning, and computational geometry to develop intelligent systems capable of producing highly accurate and stable indoor scene reconstructions. With 83 citations, 4 Scopus-indexed publications, and an h-index of 3, he is rapidly establishing a strong research footprint. Dr. Boyuan Bai’s notable scientific contribution centers on UncertainGS, an uncertainty-aware indoor reconstruction framework published in Neurocomputing (SCI/Scopus). This research introduces a novel pipeline that integrates cross-modal uncertainty prediction to guide the optimization of Gaussian Splatting. His methodological innovation improves the fidelity of reconstructed surfaces, especially in textureless or geometrically ambiguous indoor regions. His incorporation of Manhattan-world constraints into the Gaussian Splatting process represents a significant leap forward in aligning 3D surface geometry with real-world structural patterns. His research areas broadly span multi-view 3D reconstruction, Gaussian Splatting, uncertainty modeling, scene understanding, and deep reinforcement learning for geometric perception. He actively contributes to the development of next-generation 3D vision technologies, with applications in robotics, digital twins, AR/VR environments, and autonomous spatial intelligence. His work shows strong potential for large-scale deployment in real-time virtual reconstruction and simulation systems. Dr. Boyuan Bai’s scholarly output includes peer-reviewed journal publications, research project leadership, and scientific contributions that address fundamental challenges in computational imaging. His research achievements demonstrate clear innovation, technical depth, and growing influence in the fields of computer vision and graphics. Through ongoing academic collaborations and continued focus on high-impact research problems, he is emerging as a promising researcher in intelligent 3D scene modeling and uncertainty-aware visual computing.

Profiles: Scopus | IEEE Xplore | ACM Digital Library 

Featured Publications

1. Bai, B., Qiao, X., Lu, P., Zhao, H., Shi, W., & others. (2025). Two grids are better than one: Hybrid indoor scene reconstruction framework with adaptive priors. Neurocomputing, 618(C). https://doi.org/10.1016/j.neucom.2024.129118

2. Huang, Y., Bai, B., Zhu, Y., Qiao, X., Su, X., Yang, L., & others. (2024). ISCom: Interest-aware semantic communication scheme for point cloud video streaming on Metaverse XR devices. IEEE Journal on Selected Areas in Communications, 42(4). https://doi.org/10.1109/JSAC.2023.3345430

3. Zhu, Y., Huang, Y., Qiao, X., Tan, Z., Bai, B., & others. (2023). A semantic-aware transmission with adaptive control scheme for volumetric video service. IEEE Transactions on Multimedia, 25. https://doi.org/10.1109/TMM.2022.3217928

4. Huang, Y., Zhu, Y., Qiao, X., Tan, Z., & Bai, B. (2021). AITransfer: Progressive AI-powered transmission for real-time point cloud video streaming. In Proceedings of the 29th ACM International Conference on Multimedia (MM ’21). https://doi.org/10.1145/3474085.3475624

Soufiane Bacha | Artificial Intelligence | Best Researcher Award

Mr. Soufiane Bacha | Artificial Intelligence | Best Researcher Award

PhD Student, University of Science and Technology Beijing, Algeria

Mr. Soufiane Bacha is a promising young researcher in Artificial Intelligence and Data Quality with a strong academic background and growing international exposure. He is currently pursuing a Ph.D. in Data Quality at the University of Science and Technology Beijing (2023–ongoing) and a Ph.D. in Cancer Epidemiology at the Department of Computer Science, Ibn Khaldoun University of Tiaret, Algeria (2021–2025). He also holds a Master’s degree in Software Engineering (2019–2021), where he ranked first in his class and completed a thesis on imbalanced datasets and boosting methods, and a B.Sc. in Computer Science (2016–2019) with strong foundations in algorithms, cryptography and programming. Professionally, Mr. Soufiane Bacha gained valuable international research experience through an internship at the Faculty of Polytechnic Mons, UMONS University in Belgium, where he worked on Internet of Things (IoT) applications involving Raspberry Pi, Arduino and sensor technologies. He has served as a part-time lecturer in Graph Theory and as an ICT trainer in web development, demonstrating strong teaching, leadership, and communication skills. His research interests span artificial intelligence, data quality, machine learning for imbalanced datasets, cancer epidemiology, distributed applications and business analytics. He is proficient in Python, C/C++, Java, SQL and data analysis tools, with expertise in OLAP, data mining, and deep learning frameworks. His achievements include an NVIDIA Deep Learning Institute Certificate, participation in AI workshops, and a Scopus-indexed publication. With a dual doctoral training and interdisciplinary focus, Mr. Soufiane Bacha is well-positioned to make impactful contributions to AI-driven data quality research and healthcare analytics on a global scale.

Profile: ORCID | Google Scholar | ResearchGate

Featured Publications

1. Bacha, S., Ning, H., Mostefa, B., Sarwatt, D. S., & Dhelim, S. (2025). A novel double pruning method for imbalanced data using information entropy and roulette wheel selection for breast cancer diagnosis (arXiv:2503.12239).