Peiyuan Li | Renewable Energy | Best Researcher Award

Mr. Peiyuan Li | Renewable Energy | Best Researcher Award

Doctor of Philosophy (Ph.D.) at East China University of Science and Technology | China

Mr. Peiyuan Li is a dedicated and innovative Ph.D. candidate in Polymer Chemistry and Physics at the East China University of Science and Technology, Shanghai, China. His research expertise lies in the development of advanced phase change materials (PCMs) with applications in battery thermal management. With a strong background in materials science and engineering, Mr. Li has made significant strides in integrating nanomaterials and polymers to enhance thermal regulation performance. His most recent publication, titled “Reduced graphene oxide/calcium alginate/polyethylene glycol composite phase change material with double-network structure for enhanced photothermal conversion”, published in the Journal of Energy Storage, demonstrates his ability to engineer composite PCMs with superior energy storage and heat dissipation properties. Mr. Li’s work not only addresses a critical challenge in sustainable energy storage but also offers scalable solutions for real-world thermal management systems. In addition to his research achievements, he is actively contributing to interdisciplinary collaborations and has a growing citation record. Mr. Li continues to strive for academic excellence and technological innovation with a vision to contribute to the development of safer, more efficient energy storage systems. His academic rigor and commitment to impactful research establish him as a promising emerging scholar in the field of energy materials.

Publication Profile

Scopus

Orcid

Education

Mr. Peiyuan Li is currently pursuing his Doctor of Philosophy (Ph.D.) in Polymer Chemistry and Physics at the prestigious East China University of Science and Technology (ECUST), located in Shanghai, China. This institution is known for its academic rigor and cutting-edge research in chemical and materials sciences. Mr. Li’s doctoral research focuses on the synthesis and application of advanced composite phase change materials (PCMs), emphasizing their use in battery thermal management systems. His academic training at ECUST combines fundamental knowledge of polymer chemistry with applied research in nanocomposites and energy storage materials. Throughout his doctoral studies, he has engaged in multidisciplinary coursework and laboratory-based research, strengthening his expertise in organic/inorganic hybrid materials, thermal conductivity, and energy system design. Mr. Li has demonstrated strong academic performance and has been involved in scholarly communication through publications and academic conferences. Prior to his Ph.D., he received foundational education in chemistry and materials science, laying the groundwork for his current specialization. His academic path reflects a clear focus on addressing real-world energy challenges through scientific research, and his educational background has equipped him with both theoretical and practical skills to innovate in the field of energy materials and thermal regulation technologies.

Professional Experience

As a Ph.D. candidate at the East China University of Science and Technology, Mr. Peiyuan Li has been actively engaged in cutting-edge research projects in the field of polymer-based energy materials since the beginning of his doctoral studies. His professional experience primarily revolves around laboratory research, scientific writing, and academic collaboration. He has participated in both independent and team-based projects focused on the development and characterization of advanced phase change materials (PCMs) for thermal management in lithium-ion batteries. His hands-on experience includes material synthesis, nanocomposite fabrication, thermal analysis (e.g., DSC, TGA), and photothermal performance evaluation. Mr. Li also contributes to the preparation of technical reports and scientific manuscripts, exemplified by his recent publication in the Journal of Energy Storage. He regularly collaborates with interdisciplinary teams of chemists, materials scientists, and engineers, enhancing the practical application of research findings. Furthermore, he has presented findings at departmental seminars and is working toward participation in international conferences. Through these experiences, Mr. Li has developed strong skills in experimental design, data analysis, and academic communication. His current role continues to evolve as he progresses in his research and seeks collaborative opportunities to translate academic insights into real-world innovations.

Research Interest

Mr. Peiyuan Li’s research interests lie at the intersection of polymer chemistry, nanomaterials, and energy systems, with a particular focus on the development of phase change materials (PCMs) for battery thermal management. His work is driven by the urgent need for improved energy efficiency and safety in energy storage technologies, especially in the context of electric vehicles and portable electronics. Mr. Li is deeply interested in the design and optimization of composite materials that exhibit enhanced thermal conductivity, stability, and energy storage capacity. He explores the integration of nanostructured materials such as reduced graphene oxide and bio-derived polymers to engineer multifunctional PCMs with superior photothermal and thermal regulatory properties. Additionally, his interest extends to the study of polymer networks, hydrogel composites, and sustainable material systems that contribute to green energy solutions. Mr. Li is also keen on investigating heat transfer mechanisms in confined structures and the scalability of lab-developed PCMs for industrial applications. His research aims not only to solve technical limitations in battery safety and performance but also to contribute to broader innovations in thermal management systems and energy-saving materials for smart devices and next-generation storage technologies.

Research Skills

Mr. Peiyuan Li possesses a comprehensive set of research skills essential for the design, development, and evaluation of advanced energy materials. His core competencies include synthesis of composite phase change materials (PCMs), polymer crosslinking, and nanomaterial integration, specifically using reduced graphene oxide and bio-polymers like calcium alginate. He is proficient in thermal and structural characterization techniques such as Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD). In addition to material synthesis, he is skilled in photothermal conversion measurement and performance testing of thermal management systems. Mr. Li also demonstrates expertise in data interpretation and scientific communication, having authored peer-reviewed publications. He is adept in using research software and analytical tools, including Origin, ChemDraw, and MATLAB for data plotting and simulation purposes. Collaborative research and project planning are also part of his skill set, allowing him to contribute effectively to multidisciplinary teams. With a solid foundation in polymer chemistry and physics, he continuously hones his experimental techniques and research methodologies to innovate in the field of energy storage and thermal regulation. His methodological rigor and experimental precision distinguish him as a skilled researcher capable of addressing complex material challenges.

Awards and Honors

While Mr. Peiyuan Li is still in the early stage of his research career as a doctoral candidate, his contributions to energy materials research have already earned recognition within academic circles. His co-authored paper titled “Reduced graphene oxide/calcium alginate/polyethylene glycol composite phase change material with double-network structure for enhanced photothermal conversion” has been published in the prestigious Journal of Energy Storage (Elsevier), marking a significant academic milestone. Although specific awards or formal honors are not yet listed, the quality and impact of his research reflect high academic merit. His work demonstrates innovation in material design and application, aligning well with the goals of various academic award categories such as the Young Scientist Award or Best Research Scholar Award. Mr. Li’s proactive involvement in research and publication activities highlights his dedication to academic excellence. He continues to engage in institutional research initiatives and aims to compete for national and international research fellowships and innovation challenges. As he progresses through his doctoral program, further recognitions, travel grants, and academic awards are anticipated, reflecting his strong potential and commitment to scientific advancement in energy materials and sustainability.

Author Metrics

  • Total Citations: 71+

  • Cited By: 70 documents

  • Total Publications (Indexed): 4

  • h-index: 2

An h-index of 2 means Mr. Peiyuan Li has at least 2 papers that have been cited at least 2 times each.

Publications Top Notes

1. Reduced graphene oxide/calcium alginate/polyethylene glycol composite phase change material with double‑network structure for enhanced photothermal conversion
Year: 2025

2. Crosslinking polyethylene glycol and silica microcapsules composite phase change material with wide heat storage temperature range and shape memory function
Year: 2025

3. Calcium alginate / Polyaniline double network aerogel electrode for compressible and high electrochemical performance integrated supercapacitors
Year: 2024

4. Optimization of electrochemical performance for double network electrically conductive aerogel‑based supercapacitor electrode
Citations: 6
Year: 2023

5. Construction and characterization of highly stretchable ionic conductive hydrogels for flexible sensors with good anti‑freezing performance
Citations: 70
Year: 2023

Conclusion

Mr. Peiyuan Li exemplifies the qualities of a forward-thinking researcher committed to solving critical problems in energy storage and thermal management through advanced materials design. His academic journey at the East China University of Science and Technology has equipped him with strong theoretical knowledge and practical expertise in polymer chemistry and nanocomposite synthesis. His focus on phase change materials tailored for battery thermal management addresses a vital area in the global push for energy-efficient and safe storage systems. Through published research, hands-on experimentation, and multidisciplinary collaboration, Mr. Li has demonstrated his capability to contribute meaningfully to both academic and industrial advancements. His skills in experimental design, thermal analysis, and scientific writing are well-aligned with the demands of cutting-edge materials science research. As he continues his Ph.D. journey, Mr. Li is poised to make further contributions to sustainable energy solutions and novel materials development. His research trajectory suggests a promising future as a scholar and innovator, making him a strong candidate for research awards and recognitions that celebrate scientific excellence, innovation, and real-world impact. He aspires to continue bridging scientific discovery and technological application in the field of energy materials.

 

Sailin Liu | Rechargeable Batteries | Best Researcher Award

Dr. Sailin Liu | Rechargeable Batteries | Best Researcher Award

Postdoc researcher at The University of Adelaide, Australia.

Dr. Sailin Liu is an emerging expert in materials science, specializing in electrolyte systems and electrode/electrolyte interfacial studies for advanced energy storage technologies. He currently holds an Australian Research Council (ARC) Industry Early Career Fellowship, hosted in Australia. With a rapidly growing research profile, Dr. Liu has published 43 peer-reviewed journal articles, 30 of which were produced in the past four years. His scholarly contributions include publications in high-impact journals such as Science Advances, Nature Communications, Angewandte Chemie International Edition, Advanced Materials, and Energy & Environmental Science. Notably, 8 of his papers have been recognized as ESI Hot Papers (Top 0.1% by Web of Science), and 17 have been designated as ESI Highly Cited Papers (Top 1%). His work has been cited over 6,400 times, earning him an H-index of 33 as of April 2025. Beyond academia, Dr. Liu has engaged in translational research through a $0.6 million AUD industrial collaboration with IonDrive Technologies. His achievements underscore a dynamic and impactful career trajectory in the field of sustainable energy materials.

Publication Profile

Scopus

Orcid

Google Scholar

Educational Background

Dr. Sailin Liu’s educational background reflects a continuous and deepening focus on materials science and engineering. He began his academic journey at Central South University in China, earning a Bachelor’s degree in Mineral Processing in 2014. He continued at the same university to complete a Master’s degree in Materials Engineering in 2017, developing strong foundational skills in materials characterization and electrochemical applications. Driven by his passion for energy-related materials, Dr. Liu pursued doctoral studies at the University of Wollongong in Australia, completing his Ph.D. in Materials Engineering in 2021. His doctoral work emphasized cutting-edge electrolyte research and earned him the Outstanding PhD Thesis Award from the university. This international education has provided Dr. Liu with a solid theoretical and practical grounding in materials science, with strong interdisciplinary training bridging engineering, chemistry, and applied physics. His graduate and postgraduate research experience has shaped his specialization in electrolyte systems, battery interface mechanisms, and advanced spectroscopy techniques, laying the groundwork for a productive postdoctoral and early faculty career in energy storage research.

Professional Experience

Dr. Sailin Liu currently serves as an ARC Industry Early Career Research Fellow, a prestigious position awarded by the Australian Research Council beginning in December 2024. Prior to this, he was a postdoctoral research fellow at the University of Adelaide from September 2021 to December 2024, where he actively contributed to several high-profile research projects in energy storage, particularly on aqueous zinc-ion batteries. Dr. Liu’s earlier research experience includes significant work at the University of Wollongong, where he completed his Ph.D. in materials engineering while receiving awards for both academic excellence and impactful publication. Throughout his academic and professional career, he has demonstrated leadership in managing both government- and industry-funded projects, including acting as the Chief Investigator (CI) on ARC-funded initiatives and several projects supported by the Australian Synchrotron Access Program. His involvement in a long-term industrial partnership with IonDrive Technologies further exemplifies his ability to bridge academia and industry to tackle real-world energy challenges. With a well-rounded background combining education, postdoctoral training, and fellowship-supported research, Dr. Liu has built a strong reputation in energy materials and electrolyte interface science.

Research Interest

Dr. Liu’s primary research interests lie in the study of electrolytes and electrolyte/electrode interfaces for next-generation energy storage devices, including aqueous zinc-ion batteries, lithium-metal batteries, and other advanced systems. His work emphasizes the design, synthesis, and in-situ characterization of novel electrolyte formulations that exhibit anti-freezing properties, enhanced electrochemical stability, and improved ion transport mechanisms. Dr. Liu is particularly interested in the solvation structures of metal ions in aqueous and hybrid electrolyte systems, and the formation mechanisms of solid electrolyte interphases (SEI) at varying temperatures. By leveraging synchrotron-based spectroscopic and imaging techniques, he explores interfacial phenomena with high spatial and temporal resolution. His research also focuses on identifying molecular-level mechanisms behind electrolyte degradation and electrode surface passivation, using real-time operando and in-situ monitoring approaches. In addition to fundamental studies, Dr. Liu is engaged in applied research that contributes to the development of scalable, low-cost, and environmentally friendly energy storage technologies. His scientific curiosity is driven by the broader vision of accelerating the transition to carbon-neutral energy systems through materials innovation.

Research Skills

Dr. Sailin Liu possesses a comprehensive suite of research skills centered on materials characterization, electrochemical testing, and advanced spectroscopy for energy storage systems. He is proficient in designing and formulating high-performance aqueous and hybrid electrolytes, and has extensive experience with solid–liquid interface engineering. A major component of his skillset involves utilizing in-situ and operando synchrotron techniques, such as infrared microspectroscopy (IRM), X-ray absorption spectroscopy (XAS), micro-computed tomography (MCT), and powder diffraction (PD), to uncover dynamic interfacial processes and phase transformations in batteries. He has independently led more than ten beamline access projects at the Australian Synchrotron, highlighting his capability in complex experimental design and high-end facility operation. Dr. Liu is also skilled in electrochemical impedance spectroscopy (EIS), cyclic voltammetry, and galvanostatic cycling, enabling him to correlate materials properties with battery performance. In addition, he is experienced in data analytics, image reconstruction, and spectral deconvolution for interpreting large-scale experimental datasets. His ability to integrate chemistry, physics, and engineering concepts equips him to tackle multifaceted challenges in the field of sustainable energy technologies.

Awards and Honors

Dr. Liu has received several competitive awards and honors that reflect both his academic excellence and research innovation. In 2024, he was honored with the Executive Dean’s Excellent Early Career Research Award from the University of Adelaide’s Faculty of Sciences, Engineering and Technology. That same year, he also received the Best Contribution to Research Quality (ECR) Award from the Centre for Energy Technology. Nationally, he was awarded the prestigious AINSE Early Career Research Award in 2022 and the AINSE Postgraduate Research Award in 2020, affirming his recognition as a promising researcher in the Australian scientific community. His doctoral research was distinguished with the Outstanding PhD Thesis Award by the University of Wollongong in 2021. Additionally, he received the Best Paper Award from the Institute for Superconducting and Electronic Materials (ISEM) in 2020. These accolades underscore Dr. Liu’s dedication to producing high-impact research and contributing to the broader scientific landscape in materials and energy engineering.

Author Metrics

  • Total Citations: 6,681

  • h-index: 34
    (34 publications have been cited at least 34 times each)

  • i10-index: 38
    (38 publications have been cited at least 10 times each)

Top Noted Publication

  • An in‐depth study of Zn metal surface chemistry for advanced aqueous Zn‐ion batteries
    Journal: Advanced Materials, 32(34), 2003021
    Year: 2020
    Citations: 999

  • Electrolyte Design for In Situ Construction of Highly Zn²⁺‐Conductive Solid Electrolyte Interphase to Enable High‐Performance Aqueous Zn‐Ion Batteries under Practical Conditions
    Journal: Advanced Materials, 33(11), 2007416
    Year: 2021
    Citations: 695

  • Bio-inspired design of an in situ multifunctional polymeric solid–electrolyte interphase for Zn metal anode cycling at 30 mA cm⁻² and 30 mA h cm⁻²
    Journal: Energy & Environmental Science, 14(11), 5947–5957
    Year: 2021
    Citations: 419

  • Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc‐ion batteries
    Journal: Advanced Functional Materials, 31(38), 2104281
    Year: 2021
    Citations: 372

  • Developing cathode materials for aqueous zinc ion batteries: challenges and practical prospects
    Journal: Advanced Functional Materials, 34(5), 2301291
    Year: 2024
    Citations: 353

  • From room temperature to harsh temperature applications: Fundamentals and perspectives on electrolytes in zinc metal batteries
    Journal: Science Advances, 8(12), eabn5097
    Year: 2022
    Citations: 321

  • Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage
    Journal: ACS Nano, 13(10), 11843–11852
    Year: 2019
    Citations: 272

  • An intrinsically non‐flammable electrolyte for high‐performance potassium batteries
    Journal: Angewandte Chemie International Edition, 59(9), 3638–3644
    Year: 2020
    Citations: 271

  • Understanding H₂ Evolution Electrochemistry to Minimize Solvated Water Impact on Zinc‐Anode Performance
    Journal: Advanced Materials, 34(45), 2206754
    Year: 2022
    Citations: 240

  • Solvent control of water O−H bonds for highly reversible zinc ion batteries
    Journal: Nature Communications, 14(1), 2720
    Year: 2023
    Citations: 224

Conclusion

Dr. Sailin Liu exemplifies the qualities of a forward-thinking and impactful materials scientist with a growing international reputation in energy storage research. His work is characterized by a rigorous approach to understanding electrolyte behavior and interfacial dynamics, supported by state-of-the-art characterization tools and multidisciplinary collaboration. With over 6,400 citations, an H-index of 33, and a consistent output of ESI-recognized papers, Dr. Liu’s scholarly impact is both broad and deep. His leadership in multiple competitive research projects—including ARC-funded fellowships, Australian Synchrotron access programs, and a long-term industrial collaboration—demonstrates his capacity to deliver innovation across academic and applied contexts. He brings together a rare combination of experimental expertise, theoretical insight, and practical problem-solving. As he continues to push the frontiers of energy storage materials and interface science, Dr. Liu is well-positioned to make substantial contributions to sustainable energy solutions in Australia and globally. His trajectory reflects a commitment to excellence in research, mentorship, and collaboration that will shape the field for years to come.