Boyuan Bai | Artificial Intelligence and Machine Learning | Best Researcher Award

Dr. Boyuan Bai | Artificial Intelligence and Machine Learning | Best Researcher Award

Doctor | Beijing University of Posts and Telecommunications | China

Dr. Boyuan Bai is an emerging researcher in advanced visual computing, with a focused contribution to 3D reconstruction, Gaussian Splatting, multi-view scene modeling, and uncertainty-aware machine learning. His work integrates computer graphics, deep learning, and computational geometry to develop intelligent systems capable of producing highly accurate and stable indoor scene reconstructions. With 83 citations, 4 Scopus-indexed publications, and an h-index of 3, he is rapidly establishing a strong research footprint. Dr. Boyuan Bai’s notable scientific contribution centers on UncertainGS, an uncertainty-aware indoor reconstruction framework published in Neurocomputing (SCI/Scopus). This research introduces a novel pipeline that integrates cross-modal uncertainty prediction to guide the optimization of Gaussian Splatting. His methodological innovation improves the fidelity of reconstructed surfaces, especially in textureless or geometrically ambiguous indoor regions. His incorporation of Manhattan-world constraints into the Gaussian Splatting process represents a significant leap forward in aligning 3D surface geometry with real-world structural patterns. His research areas broadly span multi-view 3D reconstruction, Gaussian Splatting, uncertainty modeling, scene understanding, and deep reinforcement learning for geometric perception. He actively contributes to the development of next-generation 3D vision technologies, with applications in robotics, digital twins, AR/VR environments, and autonomous spatial intelligence. His work shows strong potential for large-scale deployment in real-time virtual reconstruction and simulation systems. Dr. Boyuan Bai’s scholarly output includes peer-reviewed journal publications, research project leadership, and scientific contributions that address fundamental challenges in computational imaging. His research achievements demonstrate clear innovation, technical depth, and growing influence in the fields of computer vision and graphics. Through ongoing academic collaborations and continued focus on high-impact research problems, he is emerging as a promising researcher in intelligent 3D scene modeling and uncertainty-aware visual computing.

Profiles: Scopus | IEEE Xplore | ACM Digital Library 

Featured Publications

1. Bai, B., Qiao, X., Lu, P., Zhao, H., Shi, W., & others. (2025). Two grids are better than one: Hybrid indoor scene reconstruction framework with adaptive priors. Neurocomputing, 618(C). https://doi.org/10.1016/j.neucom.2024.129118

2. Huang, Y., Bai, B., Zhu, Y., Qiao, X., Su, X., Yang, L., & others. (2024). ISCom: Interest-aware semantic communication scheme for point cloud video streaming on Metaverse XR devices. IEEE Journal on Selected Areas in Communications, 42(4). https://doi.org/10.1109/JSAC.2023.3345430

3. Zhu, Y., Huang, Y., Qiao, X., Tan, Z., Bai, B., & others. (2023). A semantic-aware transmission with adaptive control scheme for volumetric video service. IEEE Transactions on Multimedia, 25. https://doi.org/10.1109/TMM.2022.3217928

4. Huang, Y., Zhu, Y., Qiao, X., Tan, Z., & Bai, B. (2021). AITransfer: Progressive AI-powered transmission for real-time point cloud video streaming. In Proceedings of the 29th ACM International Conference on Multimedia (MM ’21). https://doi.org/10.1145/3474085.3475624

Wei Pan | Artificial Intelligence | Best Researcher Award

Dr. Wei Pan | Artificial Intelligence | Best Researcher Award

Researcher | OPT Machine Vision | Japan

Dr. Wei Pan is an accomplished researcher specializing in machine vision, 3D imaging, computational geometry, and optical metrology, currently contributing to OPT Machine Vision Corporation in Japan. His research is positioned at the intersection of machine learning, geometric learning, and computer-aided design, with applications in precision manufacturing, intelligent inspection, and automation. With 26 Scopus-indexed publications, 146 citations, and an h-index of 7, Dr. Wei Pan’s research has advanced computational methodologies for 3D reconstruction, point cloud processing, mesh denoising, phase-shifting profilometry, and surface metrology. His works have appeared in leading journals including Advanced Photonics, Optics Express, Computer-Aided Design, Automation in Construction, and The Visual Computer. Notably, his 2024 publications explore deep-learning-embedded structured light imaging and topology-aware transformers for point cloud registration, reflecting his pioneering integration of AI and optical engineering. Dr. Wei Pan has demonstrated exceptional innovation through 39 patents across domains such as 3D data filtering, surface defect detection, structured light reconstruction, and intelligent robotic calibration. These inventions strengthen industrial imaging precision and automation efficiency. His patent WO-2022057250-A1 on mesh denoising and CN-118397020-A on image segmentation and contour extraction exemplify impactful R&D contributions to intelligent vision systems. Beyond publications and patents, Dr. Wei Pan actively engages in collaborative research and R&D leadership, driving algorithmic innovation in structured-light metrology and computer vision. His research excellence has been recognized with multiple distinctions, including the President’s Graduate Fellowship (Singapore) and the Kuang-Chi Young Talents Award (China). Through his interdisciplinary expertise bridging optical design, machine learning, and computational modeling, Dr. Wei Pan continues to advance the frontiers of intelligent manufacturing and vision-based automation technologies.

Profiles: Scopus | ORCID | Google Scholar | ResearchGate

Featured Publications

  • Liu, J., Hao, J., Lin, H., Pan, W., Yang, J., Feng, Y., Wang, G., Li, J., Jin, Z., Zhao, Z., & Liu, Z. (2023). Deep learning-enabled 3D multimodal fusion of cone-beam CT and intraoral mesh scans for clinically applicable tooth-bone reconstruction. Patterns, 4(9), Article 100953.

  • Lu, L., Bu, C., Su, Z., Guan, B., Yu, Q., Pan, W., & Zhang, Q. (2024). Generative deep-learning-embedded asynchronous structured light for three-dimensional imaging. Advanced Photonics, 6(4), 046004–046004.

  • Chen, S., Wang, J., Pan, W., Gao, S., Wang, M., & Lu, X. (2023). Towards uniform point distribution in feature-preserving point cloud filtering. Computational Visual Media, 9(2), 249–263.

  • Lu, L., Jia, Z., Pan, W., Zhang, Q., Zhang, M., & Xi, J. (2020). Automated reconstruction of multiple objects with individual movement based on PSP. Optics Express, 28(18), 28600–28611.

  • Si, G. Y., Leong, E. S. P., Pan, W., Chum, C. C., & Liu, Y. J. (2014). Plasmon-induced transparency in coupled triangle-rod arrays. Nanotechnology, 26(2), 025201.