Peijia Bai | Nanotechnology and Materials Science | Best Researcher Award

Dr. Peijia Bai | Nanotechnology and Materials Science | Best Researcher Award

Assistant Research Fellow | Beihang University | China

Dr. Peijia Bai is an emerging materials scientist whose research significantly advances high-efficiency thermal management, electrothermal conversion, and radiative cooling technologies. His work centers on electrocaloric materials and devices, ultrafast-response phase-change materials (PCMs), thermal system design, and protective color radiative-cooling coatings. With a strong focus on bridging fundamental materials science with practical applications, he has contributed to establishing next-generation energy-efficient cooling strategies and improving heat-dissipation performance for electronic and aerospace systems. Dr. Peijia Bai has published more than 30 peer-reviewed journal articles across leading platforms including Advanced Materials, Nature Communications, Science, and Joule, with over 812 Scopus citations, 24 documents and an h-index of 14. His publications include more than 10 papers as first or corresponding author, highlighting his prominent role in driving independent innovations. He has also contributed to one research monograph and authored multiple high-impact conference papers that extend his work to global scientific communities. A major contribution of his research is the development of a standardized electrothermal-effect measurement protocol, which has been widely adopted by both academia and industry. This standardized method has been cited extensively in top-tier journals and is now considered an important benchmark for evaluating electrothermal device performance. His work has also yielded seven patented technologies covering thermal-functional materials and device architectures, demonstrating strong translational potential. Dr. Peijia Bai has led and contributed to multiple funded research projects related to thermal management materials, advanced cooling devices, and energy-conversion technologies. His innovations have earned him the prestigious SAMPE International Award and recognition within professional societies such as the Zhejiang Society for Materials Progress. He also serves on the young editorial boards of cScience and Renewable and Sustainable Energy, reflecting his growing influence in the field. Dr. Peijia Bai’s research continues to advance innovative thermal strategies, contributing impactful solutions for sustainable energy technologies, aerospace materials, and advanced electronic systems.

Profiles: Scopus | ORCID | ResearchGate

Featured Publications

1. Bai, P., Yang, Q., & Yu, S. (2025). Electrocaloric refrigeration utilizing lead-free multilayer ceramics with high heat transfer efficiency. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2025.128927

2. Bai, P., Yang, Q., & Yu, S. (2025). Integration of efficient photothermal and flexible solid-solid PCM for personal thermoregulation in cold environments. iScience. https://doi.org/10.1016/j.isci.2025.114032

3. Wang, G., Bai, P., Yuan, S., Bo, Y., Zhang, D., & Ma, R. (2025). Flexible electrocaloric polymer stack driven by one AA battery for highly efficient personalized thermoregulation. Nano Letters, 25. https://doi.org/10.1021/acs.nanolett.5c03730

4. Wang, G., Bai, P., Yuan, S., Bo, Y., Zhou, Z., Zhang, D., & Ma, R. (2025). Highly efficient cooling via synergistic electro‐thermal phase changes. Advanced Materials. https://doi.org/10.1002/adma.202506006

5. Ma, W., Liu, X., Yang, T., Wang, J., Qiu, Z., Cai, Z., Bai, P., Ji, X., & Huang, Y. (2025). Strong magnetic–dielectric synergistic gradient metamaterials for boosting superior multispectral ultra‐broadband absorption with low‐frequency compatibility. Advanced Functional Materials. https://doi.org/10.1002/adfm.202314046

Vincelet Jobikha A | Materials Science | Women Researcher Award

Ms. Vincelet Jobikha A | Materials Science | Women Researcher Award

Research Scholar, Saveetha Engineering College, India

Ms. Vincelet Jobikha A is a dedicated and accomplished researcher in Materials Science, currently pursuing her Ph.D. in Physics at Saveetha Engineering College, affiliated with Anna University, focusing on nanomaterials for energy production and rare earth-doped tellurite glass and ceramics for radiation shielding applications. She completed her M.Sc. in Physics at Muslim Arts College, Kanniyakumari and B.Sc. in Physics at Infant Jesus College of Arts and Science for Women, graduating with first-class distinction in both degrees. Her professional experience includes active participation in 15 national and international conferences, workshops and specialized training programs, delivering oral and poster presentations, and engaging in collaborative research initiatives across India. Ms. Vincelet Jobikha A research interests encompass advanced glass and ceramic materials, nanomaterials for solar energy enhancement and radiation shielding technologies, with expertise in material synthesis, structural and optical characterization (XRD, FTIR, UV-Vis-NIR, PL) and gamma-ray shielding evaluations. She has demonstrated strong research skills through the development of novel nanomaterials that improve solar energy efficiency, designing electrical circuits and securing four patents related to glass systems for radiation protection. Her scholarly contributions include one Scopus-indexed publication with another under review, alongside numerous participations in specialized courses at JNTU Hyderabad and Madurai Kamaraj University. Ms. Vincelet Jobikha A has received the SCOPUS INDEX 2025 International Best Researcher Award for excellence in Glass Ceramics and actively engages in co-curricular activities that enhance leadership, communication and mentorship. Her combination of rigorous academic training, innovative research and professional recognition positions her as a rising leader in materials science, with strong potential for impactful international research contributions, high-quality publications and continued advancement of science and technology.

Profile: Scopus | ORCID | Google Scholar | ResearchGate | LinkedIn

Featured Publications

1. Vinothkumar, P., Yamini, B., Praveenkumar, S., & Jobikha, A. V. (2025). Synthesis, structural, and optical properties of lead-free Tm³⁺ ions doped zinc tellurite glass and Ho³⁺ ions doped zinc borophosphate glass for radiation shielding application. Radiation Physics and Chemistry, 234, 112795.